Radiomics based automated quality assessment for T2W prostate MR images

医学 无线电技术 前列腺 质量评定 医学物理学 放射科 核医学 病理 内科学 外部质量评估 癌症
作者
Linda C.P. Thijssen,Maarten de Rooij,Jelle O. Barentsz,Henkjan Huisman
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:165: 110928-110928 被引量:3
标识
DOI:10.1016/j.ejrad.2023.110928
摘要

PurposeThe guidelines for prostate cancer recommend the use of MRI in the prostate cancer pathway. Due to the variability in prostate MR image quality, the reliability of this technique in the detection of prostate cancer is highly variable in clinical practice. This leads to the need for an objective and automated assessment of image quality to ensure an adequate acquisition and hereby to improve the reliability of MRI. The aim of this study is to investigate the feasibility of Blind/referenceless image spatial quality evaluator (Brisque) and radiomics in automated image quality assessment of T2-weighted (T2W) images.MethodAnonymized axial T2W images from 140 patients were scored for quality using a five-point Likert scale (low, suboptimal, acceptable, good, very good quality) in consensus by two readers. Images were dichotomized into clinically acceptable (very good, good and acceptable quality images) and clinically unacceptable (low and suboptimal quality images) in order to train and verify the model. Radiomics and Brisque features were extracted from a central cuboid volume including the prostate. A reduced feature set was used to fit a Linear Discriminant Analysis (LDA) model to predict image quality. Two hundred times repeated 5-fold cross-validation was used to train the model and test performance by assessing the classification accuracy, the discrimination accuracy as receiver operating curve - area under curve (ROC-AUC), and by generating confusion matrices.ResultsThirty-four images were classified as clinically unacceptable and 106 were classified as clinically acceptable. The accuracy of the independent test set (mean ± standard deviation) was 85.4 ± 5.5%. The ROC-AUC was 0.856 (0.851 – 0.861) (mean; 95% confidence interval).ConclusionsRadiomics AI can automatically detect a significant portion of T2W images of suboptimal image quality. This can help improve image quality at the time of acquisition, thus reducing repeat scans and improving diagnostic accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzz发布了新的文献求助30
刚刚
MR_Z发布了新的文献求助10
刚刚
CodeCraft应助HJJHJH采纳,获得20
1秒前
龙泉完成签到 ,获得积分10
1秒前
脑洞疼应助super chan采纳,获得10
1秒前
汉堡包应助奋斗的炎彬采纳,获得10
2秒前
2秒前
3秒前
所所应助开水采纳,获得10
4秒前
KRYSTAL完成签到,获得积分10
4秒前
橘子树完成签到,获得积分10
4秒前
4秒前
乾坤完成签到,获得积分10
4秒前
5秒前
粒粒完成签到,获得积分10
5秒前
6秒前
6秒前
烂漫安珊完成签到,获得积分10
6秒前
丹丹完成签到,获得积分10
7秒前
厚朴完成签到,获得积分10
7秒前
7秒前
Iwbhfe完成签到 ,获得积分10
8秒前
小杰发布了新的文献求助10
8秒前
8秒前
深情安青应助阿谭采纳,获得10
8秒前
9秒前
kkkkk发布了新的文献求助10
9秒前
crescent发布了新的文献求助20
9秒前
安静幻桃完成签到,获得积分10
9秒前
听风轻语完成签到,获得积分10
9秒前
认真子默发布了新的文献求助10
10秒前
汉堡包应助sin采纳,获得10
10秒前
QIU完成签到 ,获得积分10
10秒前
10秒前
花园荆棘完成签到,获得积分10
10秒前
彭于晏应助acd采纳,获得30
10秒前
3w学术完成签到,获得积分10
11秒前
幸福猎人1991完成签到,获得积分10
11秒前
wdn0411发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522770
求助须知:如何正确求助?哪些是违规求助? 3103775
关于积分的说明 9267140
捐赠科研通 2800323
什么是DOI,文献DOI怎么找? 1536921
邀请新用户注册赠送积分活动 715217
科研通“疑难数据库(出版商)”最低求助积分说明 708692