Radiomics based automated quality assessment for T2W prostate MR images

医学 无线电技术 前列腺 质量评定 医学物理学 放射科 核医学 病理 内科学 癌症 外部质量评估
作者
Linda C.P. Thijssen,Maarten de Rooij,Jelle O. Barentsz,Henkjan Huisman
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:165: 110928-110928 被引量:5
标识
DOI:10.1016/j.ejrad.2023.110928
摘要

PurposeThe guidelines for prostate cancer recommend the use of MRI in the prostate cancer pathway. Due to the variability in prostate MR image quality, the reliability of this technique in the detection of prostate cancer is highly variable in clinical practice. This leads to the need for an objective and automated assessment of image quality to ensure an adequate acquisition and hereby to improve the reliability of MRI. The aim of this study is to investigate the feasibility of Blind/referenceless image spatial quality evaluator (Brisque) and radiomics in automated image quality assessment of T2-weighted (T2W) images.MethodAnonymized axial T2W images from 140 patients were scored for quality using a five-point Likert scale (low, suboptimal, acceptable, good, very good quality) in consensus by two readers. Images were dichotomized into clinically acceptable (very good, good and acceptable quality images) and clinically unacceptable (low and suboptimal quality images) in order to train and verify the model. Radiomics and Brisque features were extracted from a central cuboid volume including the prostate. A reduced feature set was used to fit a Linear Discriminant Analysis (LDA) model to predict image quality. Two hundred times repeated 5-fold cross-validation was used to train the model and test performance by assessing the classification accuracy, the discrimination accuracy as receiver operating curve - area under curve (ROC-AUC), and by generating confusion matrices.ResultsThirty-four images were classified as clinically unacceptable and 106 were classified as clinically acceptable. The accuracy of the independent test set (mean ± standard deviation) was 85.4 ± 5.5%. The ROC-AUC was 0.856 (0.851 – 0.861) (mean; 95% confidence interval).ConclusionsRadiomics AI can automatically detect a significant portion of T2W images of suboptimal image quality. This can help improve image quality at the time of acquisition, thus reducing repeat scans and improving diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
无极微光应助yuan采纳,获得20
1秒前
自觉夏彤发布了新的文献求助10
1秒前
薯条完成签到,获得积分10
1秒前
2秒前
ceeray23应助小葡萄采纳,获得10
2秒前
橙子完成签到,获得积分10
2秒前
qimingran完成签到,获得积分10
2秒前
3秒前
斯文的夜雪完成签到 ,获得积分10
3秒前
Xiwen321发布了新的文献求助10
3秒前
能干寻芹完成签到,获得积分10
3秒前
清脆的又蓝完成签到,获得积分10
3秒前
lxxxq完成签到,获得积分10
4秒前
liu发布了新的文献求助10
4秒前
4秒前
yuyijk完成签到,获得积分10
4秒前
科研通AI6应助xiaoliu采纳,获得10
4秒前
5秒前
酷波er应助三三采纳,获得10
5秒前
大个应助缓慢的芸遥采纳,获得10
5秒前
怡然可乐发布了新的文献求助10
6秒前
滕老板完成签到 ,获得积分10
6秒前
whatever举报会飞的鱼求助涉嫌违规
6秒前
长风发布了新的文献求助10
6秒前
浮游呦呦完成签到,获得积分10
7秒前
派大凯不是俺完成签到,获得积分10
7秒前
7秒前
Hello应助xiaoxintaijie采纳,获得10
7秒前
云卷云舒完成签到,获得积分10
7秒前
8秒前
洁净靳发布了新的文献求助10
8秒前
天才都这样发布了新的文献求助100
8秒前
爆米花应助糖炒栗子采纳,获得10
9秒前
滕老板发布了新的文献求助10
9秒前
9秒前
朱孟研发布了新的文献求助10
9秒前
luo发布了新的文献求助10
10秒前
花样年华发布了新的文献求助10
10秒前
陈霸下。完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597618
求助须知:如何正确求助?哪些是违规求助? 4683110
关于积分的说明 14828504
捐赠科研通 4661108
什么是DOI,文献DOI怎么找? 2536751
邀请新用户注册赠送积分活动 1504315
关于科研通互助平台的介绍 1470215