Radiomics based automated quality assessment for T2W prostate MR images

医学 无线电技术 前列腺 质量评定 医学物理学 放射科 核医学 病理 内科学 癌症 外部质量评估
作者
Linda C.P. Thijssen,Maarten de Rooij,Jelle O. Barentsz,Henkjan Huisman
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:165: 110928-110928 被引量:3
标识
DOI:10.1016/j.ejrad.2023.110928
摘要

PurposeThe guidelines for prostate cancer recommend the use of MRI in the prostate cancer pathway. Due to the variability in prostate MR image quality, the reliability of this technique in the detection of prostate cancer is highly variable in clinical practice. This leads to the need for an objective and automated assessment of image quality to ensure an adequate acquisition and hereby to improve the reliability of MRI. The aim of this study is to investigate the feasibility of Blind/referenceless image spatial quality evaluator (Brisque) and radiomics in automated image quality assessment of T2-weighted (T2W) images.MethodAnonymized axial T2W images from 140 patients were scored for quality using a five-point Likert scale (low, suboptimal, acceptable, good, very good quality) in consensus by two readers. Images were dichotomized into clinically acceptable (very good, good and acceptable quality images) and clinically unacceptable (low and suboptimal quality images) in order to train and verify the model. Radiomics and Brisque features were extracted from a central cuboid volume including the prostate. A reduced feature set was used to fit a Linear Discriminant Analysis (LDA) model to predict image quality. Two hundred times repeated 5-fold cross-validation was used to train the model and test performance by assessing the classification accuracy, the discrimination accuracy as receiver operating curve - area under curve (ROC-AUC), and by generating confusion matrices.ResultsThirty-four images were classified as clinically unacceptable and 106 were classified as clinically acceptable. The accuracy of the independent test set (mean ± standard deviation) was 85.4 ± 5.5%. The ROC-AUC was 0.856 (0.851 – 0.861) (mean; 95% confidence interval).ConclusionsRadiomics AI can automatically detect a significant portion of T2W images of suboptimal image quality. This can help improve image quality at the time of acquisition, thus reducing repeat scans and improving diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉卷完成签到,获得积分10
1秒前
小确幸完成签到,获得积分10
1秒前
浩铭完成签到,获得积分10
1秒前
小吕小吕发布了新的文献求助20
3秒前
xiaobai发布了新的文献求助30
3秒前
隔壁的镇长完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助优美电脑采纳,获得10
3秒前
3秒前
yxdjzwx发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
Pt完成签到,获得积分10
5秒前
WW完成签到,获得积分10
5秒前
orixero应助郭小胖14采纳,获得10
6秒前
7秒前
7秒前
强健的雪发布了新的文献求助10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
彭于彦祖应助科研通管家采纳,获得30
8秒前
怎么说应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得20
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得30
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
坚强雪碧完成签到,获得积分10
9秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344