Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory

光伏 光伏系统 地理信息系统 太阳能 地理空间分析 随机森林 太阳能 环境科学 计算机科学 土地覆盖 地理 工程类 土地利用 地图学 土木工程 功率(物理) 人工智能 物理 电气工程 量子力学
作者
Yanwei Sun,Danfeng Zhu,Ying Li,Run Wang,Renfeng Ma
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:289: 117198-117198 被引量:25
标识
DOI:10.1016/j.enconman.2023.117198
摘要

The optimum site selection of solar photovoltaics power plant across a given geographic space is usually assessed by using the geographic information system based multi-criteria decision making methods with various restriction criteria, while such evaluation results vary with criteria weights and are difficult to be validated in real life practices. To address this issue, this paper uses a national inventory dataset of large-scale solar photovoltaics installations (the land coverage area ≥ 1 hm2) to investigate the spatial location choices of solar power plants with the aids of interpretable machine learning techniques. A total of 21 geospatial conditioning factors of solar energy development are considered. The location choices of solar photovoltaics installation are then modeled with the multi-Layer perceptron, random forest, extreme gradient boosting models for each land cover type (e.g. cropland, forest, grassland, and barren). The SHapley additive explanation and variable importance measure methods are adopted to identify key criteria and their influences on the solar photovoltaics installation location selection. Results indicate that the random forest model presented the better performance among three machine learning models. The relative importance of conditioning factors revealed that the vegetation index and distance to power grid were always the most important predictors of solar photovoltaics installation location. Furthermore, topographical factors and transportation convenience may have a moderate impact on the spatial distribution of solar photovoltaics power stations. Unexpectedly, most of resources endowment and socio-economic factors play a negligible role in determining the optimal siting of solar power farms. Simulated solar photovoltaics installations probability maps illustrated that the most suitable regions account for 4.6 % of China’s total land area. The evidence-based method proposed in this research can not only help identify suitable solar photovoltaics farm locations in terms of various decision-making criterion, but also provide a robust planning tool for sustainable development of solar energy sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zinc发布了新的文献求助10
刚刚
活力翠霜完成签到,获得积分10
刚刚
科研通AI2S应助搞怪网络采纳,获得10
刚刚
今后应助ardejiang采纳,获得10
3秒前
让他加完成签到,获得积分10
3秒前
sobremasa完成签到,获得积分10
8秒前
活力翠霜发布了新的文献求助20
8秒前
zhaoyang完成签到 ,获得积分10
8秒前
8秒前
dochx完成签到,获得积分10
9秒前
务实的凝天完成签到,获得积分10
10秒前
10秒前
大模型应助Muzz采纳,获得10
11秒前
11秒前
斯文败类应助务实的凝天采纳,获得10
14秒前
14秒前
acuter发布了新的文献求助10
14秒前
张秋雨发布了新的文献求助30
15秒前
林卷卷完成签到,获得积分10
16秒前
冰淇淋啦啦啦完成签到,获得积分20
16秒前
17秒前
zinc完成签到,获得积分10
17秒前
21秒前
22秒前
今后应助葛擎苍采纳,获得10
23秒前
25秒前
26秒前
可爱的函函应助张秋雨采纳,获得10
26秒前
科研的打工狗完成签到,获得积分10
27秒前
30秒前
北雨发布了新的文献求助10
32秒前
旷野天完成签到,获得积分10
33秒前
yanglian2003完成签到 ,获得积分10
35秒前
yyauthor发布了新的文献求助20
35秒前
牛奶秋刀鱼完成签到,获得积分10
36秒前
彭于晏应助机智羞花采纳,获得10
37秒前
37秒前
羊羊羊发布了新的文献求助10
39秒前
传奇3应助小娜娜采纳,获得10
39秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919