Spatial modelling the location choice of large-scale solar photovoltaic power plants: Application of interpretable machine learning techniques and the national inventory

光伏 光伏系统 地理信息系统 太阳能 地理空间分析 随机森林 太阳能 环境科学 计算机科学 土地覆盖 地理 工程类 土地利用 地图学 土木工程 功率(物理) 人工智能 物理 电气工程 量子力学
作者
Yanwei Sun,Danfeng Zhu,Ying Li,Run Wang,Renfeng Ma
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:289: 117198-117198 被引量:25
标识
DOI:10.1016/j.enconman.2023.117198
摘要

The optimum site selection of solar photovoltaics power plant across a given geographic space is usually assessed by using the geographic information system based multi-criteria decision making methods with various restriction criteria, while such evaluation results vary with criteria weights and are difficult to be validated in real life practices. To address this issue, this paper uses a national inventory dataset of large-scale solar photovoltaics installations (the land coverage area ≥ 1 hm2) to investigate the spatial location choices of solar power plants with the aids of interpretable machine learning techniques. A total of 21 geospatial conditioning factors of solar energy development are considered. The location choices of solar photovoltaics installation are then modeled with the multi-Layer perceptron, random forest, extreme gradient boosting models for each land cover type (e.g. cropland, forest, grassland, and barren). The SHapley additive explanation and variable importance measure methods are adopted to identify key criteria and their influences on the solar photovoltaics installation location selection. Results indicate that the random forest model presented the better performance among three machine learning models. The relative importance of conditioning factors revealed that the vegetation index and distance to power grid were always the most important predictors of solar photovoltaics installation location. Furthermore, topographical factors and transportation convenience may have a moderate impact on the spatial distribution of solar photovoltaics power stations. Unexpectedly, most of resources endowment and socio-economic factors play a negligible role in determining the optimal siting of solar power farms. Simulated solar photovoltaics installations probability maps illustrated that the most suitable regions account for 4.6 % of China’s total land area. The evidence-based method proposed in this research can not only help identify suitable solar photovoltaics farm locations in terms of various decision-making criterion, but also provide a robust planning tool for sustainable development of solar energy sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气谷蕊完成签到 ,获得积分10
1秒前
羊羊羊完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI5应助WNL采纳,获得10
2秒前
Xuu完成签到,获得积分10
2秒前
外向的沅发布了新的文献求助10
2秒前
徐慕源发布了新的文献求助10
2秒前
夏哈哈完成签到 ,获得积分10
3秒前
默默海露完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
迷路安阳发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助Jolene66采纳,获得10
5秒前
医路有你完成签到,获得积分10
5秒前
6秒前
科研通AI5应助Sean采纳,获得10
6秒前
6秒前
超帅连虎完成签到,获得积分10
6秒前
皓月千里发布了新的文献求助10
6秒前
Grayball应助包容的剑采纳,获得10
6秒前
深情安青应助寒冷书竹采纳,获得10
7秒前
wbj0722完成签到,获得积分10
7秒前
JIAO完成签到,获得积分10
7秒前
7秒前
8秒前
852应助HopeStar采纳,获得10
8秒前
圆圆发布了新的文献求助30
9秒前
Orange应助Promise采纳,获得10
9秒前
一直发布了新的文献求助20
9秒前
9秒前
10秒前
乐乐应助JonyiCheng采纳,获得10
10秒前
无聊先知发布了新的文献求助10
10秒前
医路有你发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678