Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陌上花开发布了新的文献求助10
1秒前
li完成签到 ,获得积分10
1秒前
YYT完成签到,获得积分10
2秒前
2秒前
36456657应助rory采纳,获得10
3秒前
西风凌月发布了新的文献求助10
3秒前
3秒前
4秒前
柚子发布了新的文献求助10
4秒前
4秒前
英俊的铭应助Liao采纳,获得10
4秒前
5秒前
Elk完成签到,获得积分10
5秒前
5秒前
5秒前
gqb驳回了思源应助
5秒前
5秒前
科研通AI2S应助ccc采纳,获得10
5秒前
乐乐乐乐乐乐应助zpc采纳,获得10
5秒前
6秒前
我是老大应助xl采纳,获得10
6秒前
6秒前
Ll完成签到,获得积分10
7秒前
7秒前
grnn完成签到,获得积分10
7秒前
迅速的小鸽子完成签到 ,获得积分10
8秒前
Elk发布了新的文献求助10
8秒前
brossica发布了新的文献求助10
8秒前
8秒前
8秒前
海洋发布了新的文献求助10
8秒前
hhhhh完成签到,获得积分10
9秒前
FashionBoy应助Darming采纳,获得10
9秒前
9秒前
11完成签到,获得积分10
9秒前
打打应助阳光万声采纳,获得10
10秒前
车沅发布了新的文献求助10
10秒前
YYT发布了新的文献求助10
10秒前
10秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869