Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly举报青青求助涉嫌违规
2秒前
彭a发布了新的文献求助10
2秒前
2秒前
科研通AI6应助ajjdnd采纳,获得30
2秒前
3秒前
fan发布了新的文献求助10
3秒前
沐梵完成签到,获得积分10
3秒前
4秒前
葛儿完成签到 ,获得积分10
4秒前
dangziutiu完成签到 ,获得积分10
4秒前
5秒前
5秒前
小张同学发布了新的文献求助10
5秒前
8秒前
9秒前
fan完成签到,获得积分20
9秒前
温婉的紫霜完成签到,获得积分10
10秒前
10秒前
NexusExplorer应助奋斗迎波采纳,获得10
10秒前
竹筏过海应助Akhma16采纳,获得30
10秒前
SGOM完成签到 ,获得积分10
10秒前
搜集达人应助zzc采纳,获得10
11秒前
土豆发布了新的文献求助30
11秒前
淡定曼寒应助小鱼采纳,获得20
12秒前
由天与完成签到,获得积分10
12秒前
求助人员发布了新的文献求助10
14秒前
科研通AI6应助小张同学采纳,获得10
15秒前
小L完成签到,获得积分10
16秒前
杨华启完成签到,获得积分10
16秒前
17秒前
平常丝完成签到,获得积分0
18秒前
19秒前
NSS完成签到 ,获得积分10
19秒前
19秒前
崔懿龍发布了新的文献求助10
21秒前
KING发布了新的文献求助10
22秒前
22秒前
呼呼发布了新的文献求助10
22秒前
sci2025opt完成签到 ,获得积分10
23秒前
Criminology34应助123456采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643294
求助须知:如何正确求助?哪些是违规求助? 4760914
关于积分的说明 15020418
捐赠科研通 4801640
什么是DOI,文献DOI怎么找? 2566917
邀请新用户注册赠送积分活动 1524783
关于科研通互助平台的介绍 1484355