Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skyer1完成签到,获得积分10
1秒前
鳗鱼梦寒发布了新的文献求助10
1秒前
1秒前
zhang发布了新的文献求助10
2秒前
DJH完成签到,获得积分10
3秒前
3秒前
可爱的函函应助feifei_guo采纳,获得10
4秒前
领导范儿应助Han采纳,获得10
5秒前
skyer1发布了新的文献求助10
5秒前
HL发布了新的文献求助10
5秒前
保奔发布了新的文献求助10
6秒前
Jieh完成签到,获得积分10
6秒前
万能图书馆应助刘浩然采纳,获得10
6秒前
传奇3应助刘浩然采纳,获得10
6秒前
深情安青应助荆轲刺秦王采纳,获得10
6秒前
zhang完成签到,获得积分10
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
DJH发布了新的文献求助10
8秒前
羡鱼完成签到,获得积分10
8秒前
章鱼发布了新的文献求助10
8秒前
火星上涫完成签到,获得积分10
9秒前
传统的逊发布了新的文献求助10
9秒前
wanci应助糟糕的铁锤采纳,获得10
10秒前
大刘完成签到 ,获得积分10
11秒前
丘比特应助落寞土豆采纳,获得10
12秒前
smh完成签到,获得积分10
12秒前
13秒前
hrpppp完成签到,获得积分10
13秒前
xu发布了新的文献求助10
13秒前
枕边人完成签到 ,获得积分10
13秒前
14秒前
14秒前
16秒前
18秒前
CCR发布了新的文献求助10
18秒前
先一发布了新的文献求助10
20秒前
20秒前
20秒前
pigpara发布了新的文献求助10
21秒前
idiom完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589658
求助须知:如何正确求助?哪些是违规求助? 4674292
关于积分的说明 14792969
捐赠科研通 4628917
什么是DOI,文献DOI怎么找? 2532363
邀请新用户注册赠送积分活动 1501031
关于科研通互助平台的介绍 1468487