Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fui发布了新的文献求助10
刚刚
无花果应助LIHANB采纳,获得10
刚刚
2秒前
科研顺利发布了新的文献求助10
2秒前
鸽子完成签到,获得积分10
3秒前
3秒前
5秒前
传奇3应助玛卡巴卡采纳,获得10
6秒前
7秒前
summuryi完成签到,获得积分20
7秒前
斯文香彤完成签到,获得积分10
8秒前
10秒前
10秒前
苗元槐完成签到 ,获得积分10
10秒前
田様应助Piggy采纳,获得10
11秒前
11秒前
11秒前
12秒前
13秒前
14秒前
nav完成签到 ,获得积分10
15秒前
YXY发布了新的文献求助10
15秒前
领导范儿应助鸡蛋采纳,获得10
16秒前
Jem发布了新的文献求助10
18秒前
18秒前
丶呆久自然萌完成签到,获得积分10
19秒前
22秒前
嘟噜噜完成签到,获得积分10
24秒前
Jem完成签到,获得积分10
24秒前
myth发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
香蕉觅云应助sunsnowaa采纳,获得10
26秒前
烟花应助呃呃呃c采纳,获得10
26秒前
魂断红颜发布了新的文献求助10
27秒前
科研通AI6应助WNL采纳,获得10
29秒前
YYY完成签到,获得积分10
30秒前
老迟到的访文完成签到,获得积分10
30秒前
口外彭于晏完成签到,获得积分10
30秒前
可爱的函函应助Scorpio采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758