Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助阿伟喵喵喵采纳,获得10
刚刚
wanci应助迫切采纳,获得10
1秒前
4秒前
yezi完成签到,获得积分10
4秒前
qjq琪发布了新的文献求助10
5秒前
渔泽完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
炖蛋完成签到,获得积分10
7秒前
8秒前
8秒前
冷静夜蕾完成签到,获得积分10
9秒前
风语过完成签到,获得积分10
9秒前
吴未发布了新的文献求助10
10秒前
航迹云完成签到,获得积分10
11秒前
11秒前
TYG完成签到,获得积分10
12秒前
体贴菠萝发布了新的文献求助10
12秒前
y943完成签到,获得积分10
12秒前
12秒前
酷波er应助绿豆汤采纳,获得10
12秒前
13秒前
Return发布了新的文献求助10
13秒前
敏感菲鹰发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
16秒前
贝贝完成签到 ,获得积分10
16秒前
nuanfengf发布了新的文献求助10
16秒前
17秒前
科研通AI6应助wen采纳,获得30
18秒前
b3lyp发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
于清绝完成签到 ,获得积分10
21秒前
22秒前
0x3f发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851