Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玖生发布了新的文献求助10
1秒前
充电宝应助张利双采纳,获得10
1秒前
2秒前
时梦冉完成签到 ,获得积分10
2秒前
giriraffe完成签到 ,获得积分10
3秒前
爆米花应助haku采纳,获得10
3秒前
莫茹发布了新的文献求助10
4秒前
11112完成签到,获得积分10
5秒前
困敦发布了新的文献求助10
6秒前
念姬发布了新的文献求助10
8秒前
10秒前
丁丁猫发布了新的文献求助10
11秒前
Rondab应助清秀代天采纳,获得10
12秒前
无语的寒天完成签到 ,获得积分10
14秒前
酷酷的冰真应助邢文瑞采纳,获得50
16秒前
17秒前
着急的无剑完成签到 ,获得积分10
18秒前
Xee完成签到,获得积分20
19秒前
搜集达人应助科研通管家采纳,获得100
20秒前
田様应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
yznfly应助科研通管家采纳,获得30
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
yznfly应助科研通管家采纳,获得30
20秒前
yznfly应助科研通管家采纳,获得30
21秒前
orixero应助科研通管家采纳,获得10
21秒前
21秒前
yznfly应助科研通管家采纳,获得30
21秒前
21秒前
21秒前
玖生完成签到,获得积分10
22秒前
斯文败类应助Tumbleweed668采纳,获得10
22秒前
方法发布了新的文献求助20
22秒前
甘草完成签到,获得积分10
22秒前
23秒前
26秒前
YS发布了新的文献求助10
27秒前
Xinli发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579