Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助甘特采纳,获得20
1秒前
hhh完成签到 ,获得积分10
2秒前
无辜的蜗牛完成签到 ,获得积分10
3秒前
3秒前
4秒前
承乐应助清尘hm采纳,获得10
6秒前
prode发布了新的文献求助10
6秒前
怡然的羿完成签到,获得积分10
6秒前
王欣完成签到 ,获得积分10
7秒前
7秒前
烂漫的静枫完成签到,获得积分10
7秒前
豆子发布了新的文献求助10
7秒前
8秒前
ATOM完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
大模型应助文艺的不凡采纳,获得10
9秒前
王继刚完成签到,获得积分10
9秒前
9秒前
升任亦歌完成签到,获得积分10
11秒前
一直以来发布了新的文献求助10
11秒前
123完成签到,获得积分10
12秒前
小橘子发布了新的文献求助10
13秒前
13秒前
13秒前
水123发布了新的文献求助10
16秒前
18秒前
我是老大应助天天采纳,获得10
18秒前
19秒前
mm发布了新的文献求助10
19秒前
天tian完成签到,获得积分10
19秒前
20秒前
susan完成签到,获得积分10
21秒前
LLLucen完成签到 ,获得积分10
22秒前
23秒前
23秒前
寒鸦浮水完成签到,获得积分10
24秒前
一一发布了新的文献求助10
24秒前
wentuo发布了新的文献求助10
24秒前
领导范儿应助treasure采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814