Emotional brain network decoded by biological spiking neural network

悲伤 脑电图 计算机科学 大脑活动与冥想 反向传播 心理学 幸福 神经科学 人工神经网络 人工智能 愤怒 社会心理学 精神科
作者
Hubo Xu,Kexin Cao,Hongguang Chen,Awuti Abudusalamu,Wei Wu,Yan-Xue Xue
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:1
标识
DOI:10.3389/fnins.2023.1200701
摘要

Emotional disorders are essential manifestations of many neurological and psychiatric diseases. Nowadays, researchers try to explore bi-directional brain-computer interface techniques to help the patients. However, the related functional brain areas and biological markers are still unclear, and the dynamic connection mechanism is also unknown.To find effective regions related to different emotion recognition and intervention, our research focuses on finding emotional EEG brain networks using spiking neural network algorithm with binary coding. We collected EEG data while human participants watched emotional videos (fear, sadness, happiness, and neutrality), and analyzed the dynamic connections between the electrodes and the biological rhythms of different emotions.The analysis has shown that the local high-activation brain network of fear and sadness is mainly in the parietal lobe area. The local high-level brain network of happiness is in the prefrontal-temporal lobe-central area. Furthermore, the α frequency band could effectively represent negative emotions, while the α frequency band could be used as a biological marker of happiness. The decoding accuracy of the three emotions reached 86.36%, 95.18%, and 89.09%, respectively, fully reflecting the excellent emotional decoding performance of the spiking neural network with self- backpropagation.The introduction of the self-backpropagation mechanism effectively improves the performance of the spiking neural network model. Different emotions exhibit distinct EEG networks and neuro-oscillatory-based biological markers. These emotional brain networks and biological markers may provide important hints for brain-computer interface technique exploration to help related brain disease recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dreamy4869发布了新的文献求助10
刚刚
1秒前
张志超完成签到,获得积分10
1秒前
zzulyy发布了新的文献求助10
2秒前
亚秋发布了新的文献求助10
2秒前
2秒前
Alay完成签到,获得积分10
2秒前
向日葵完成签到,获得积分10
2秒前
2秒前
xinxin发布了新的文献求助10
2秒前
Artemis完成签到,获得积分10
3秒前
桐桐应助星空物语采纳,获得10
3秒前
Bystander发布了新的文献求助10
3秒前
还单身的心情完成签到 ,获得积分10
3秒前
hhddr发布了新的文献求助50
4秒前
恋恋青葡萄完成签到,获得积分10
4秒前
斧王发布了新的文献求助10
4秒前
Alay发布了新的文献求助10
5秒前
小蘑菇应助喜悦的唇膏采纳,获得10
5秒前
5秒前
5秒前
陈哈哈发布了新的文献求助10
5秒前
芳菲依旧应助虤铠采纳,获得50
5秒前
张志超发布了新的文献求助10
6秒前
6秒前
Criminology34举报pan求助涉嫌违规
7秒前
hanli发布了新的文献求助10
7秒前
颜靖仇发布了新的文献求助10
7秒前
精明的冰淇淋完成签到 ,获得积分10
7秒前
7秒前
超级小鸭子完成签到,获得积分10
8秒前
896889655完成签到 ,获得积分20
8秒前
茶油豆腐完成签到,获得积分10
8秒前
烟花应助石头采纳,获得10
8秒前
小西完成签到,获得积分10
9秒前
ly2333完成签到,获得积分10
9秒前
乂氼发布了新的文献求助10
9秒前
9秒前
ding应助幽壑之潜蛟采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646235
求助须知:如何正确求助?哪些是违规求助? 4770584
关于积分的说明 15033924
捐赠科研通 4804968
什么是DOI,文献DOI怎么找? 2569335
邀请新用户注册赠送积分活动 1526419
关于科研通互助平台的介绍 1485810