CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties

药品 分子 计算机科学 化学 组合化学 生物物理学 计算生物学 生物系统 药理学 生物 有机化学
作者
Jianing Li,Guang Yang,Pengcheng Zhao,Xue-Xin Wei,Jian‐Yu Shi
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (Supplement_1): i326-i336 被引量:10
标识
DOI:10.1093/bioinformatics/btad222
摘要

Abstract Motivation Deep learning-based molecule generation becomes a new paradigm of de novo molecule design since it enables fast and directional exploration in the vast chemical space. However, it is still an open issue to generate molecules, which bind to specific proteins with high-binding affinities while owning desired drug-like physicochemical properties. Results To address these issues, we elaborate a novel framework for controllable protein-oriented molecule generation, named CProMG, which contains a 3D protein embedding module, a dual-view protein encoder, a molecule embedding module, and a novel drug-like molecule decoder. Based on fusing the hierarchical views of proteins, it enhances the representation of protein binding pockets significantly by associating amino acid residues with their comprising atoms. Through jointly embedding molecule sequences, their drug-like properties, and binding affinities w.r.t. proteins, it autoregressively generates novel molecules having specific properties in a controllable manner by measuring the proximity of molecule tokens to protein residues and atoms. The comparison with state-of-the-art deep generative methods demonstrates the superiority of our CProMG. Furthermore, the progressive control of properties demonstrates the effectiveness of CProMG when controlling binding affinity and drug-like properties. After that, the ablation studies reveal how its crucial components contribute to the model respectively, including hierarchical protein views, Laplacian position encoding as well as property control. Last, a case study w.r.t. protein illustrates the novelty of CProMG and the ability to capture crucial interactions between protein pockets and molecules. It’s anticipated that this work can boost de novo molecule design. Availability and implementation The code and data underlying this article are freely available at https://github.com/lijianing0902/CProMG.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonald Yang发布了新的文献求助10
2秒前
1002SHIB完成签到,获得积分10
4秒前
nihaolaojiu完成签到,获得积分10
4秒前
陈米花完成签到,获得积分10
5秒前
yyjl31完成签到,获得积分0
5秒前
yqq完成签到 ,获得积分10
6秒前
Simon_chat完成签到,获得积分0
6秒前
吐司炸弹完成签到,获得积分10
6秒前
mayfly完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
8秒前
xiaozou55完成签到 ,获得积分10
18秒前
福福完成签到 ,获得积分10
20秒前
阿泽完成签到 ,获得积分10
26秒前
HLT完成签到 ,获得积分10
29秒前
0713完成签到 ,获得积分10
30秒前
阿甘完成签到,获得积分10
40秒前
火星上的之卉完成签到 ,获得积分10
51秒前
cheney完成签到 ,获得积分10
51秒前
xxiao完成签到 ,获得积分10
51秒前
ikea1984发布了新的文献求助10
55秒前
老甘完成签到 ,获得积分10
55秒前
cherry_mm应助哥哥采纳,获得10
1分钟前
龙1完成签到,获得积分10
1分钟前
ikea1984完成签到,获得积分10
1分钟前
小白兔完成签到 ,获得积分10
1分钟前
zhao完成签到 ,获得积分10
1分钟前
清爽水彤完成签到 ,获得积分10
1分钟前
1分钟前
zx完成签到 ,获得积分10
1分钟前
紫金之巅完成签到 ,获得积分10
1分钟前
重重重飞完成签到 ,获得积分10
1分钟前
狐狸小姐完成签到 ,获得积分10
1分钟前
Remember完成签到 ,获得积分10
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
光亮的自行车完成签到 ,获得积分10
2分钟前
2分钟前
LLL完成签到,获得积分10
2分钟前
程程发布了新的文献求助10
2分钟前
光亮青柏完成签到 ,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555826
求助须知:如何正确求助?哪些是违规求助? 3131443
关于积分的说明 9391104
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890