膜
纳滤
化学工程
微型多孔材料
材料科学
聚丙烯腈
共价有机骨架
聚合物
界面聚合
渗透
气体分离
共价键
无定形固体
纳米技术
多孔性
高分子化学
单体
有机化学
化学
复合材料
生物化学
工程类
作者
Jianghai Long,Xiansong Shi,Tao Ju,Xingyuan Wang,Zhe Zhang,Yong Wang
标识
DOI:10.1016/j.memsci.2023.121880
摘要
Covalent organic polymers (COPs) with abundant micropores are deemed as promising materials for building molecular separation membranes. In spite of this potential, fabricating COP separation membranes through an efficient and scalable method remains a significant challenge. Herein, we report a simple and efficient strategy for the synthesis of COP membranes with three-dimensionally interconnected micropores. Utilizing transition-metal nitrates as a catalyst, we achieve fast polymerization of amorphous COPs with relatively uniform micropores (0.7 nm in diameter). The rational design of organic-aqueous interface allows for the direct fabrication of robust COP membranes with an ultrathin thickness of ∼20 nm on porous polyacrylonitrile substrates. The resulting hydrophobic but pore-uniform frameworks in these membranes permit fast permeation of organic liquids with a notable molecular weight cutoff of 388 g mol−1 in ethanol. To demonstrate scalability, we show that our strategy can produce large-size COP membranes with a prominent area of 200 cm2, which exhibit performances similar to that of small membrane coupons. The present study offers a potentially scalable method for producing highly microporous COP membranes toward efficient molecular separation in organic liquids.
科研通智能强力驱动
Strongly Powered by AbleSci AI