How to enhance hydrological predictions in hydrologically distinct watersheds of the Indian subcontinent?

强迫(数学) 可预测性 水文模型 计算机科学 环境科学 航程(航空) 水流 水文学(农业) 气候学 地质学 地图学 流域 统计 地理 岩土工程 复合材料 材料科学 数学
作者
Nikunj K. Mangukiya,Ashutosh Sharma,Chaopeng Shen
出处
期刊:Hydrological Processes [Wiley]
卷期号:37 (7) 被引量:6
标识
DOI:10.1002/hyp.14936
摘要

Abstract Accurate hydrological predictions are required to prepare for the impacts of climate change, especially in India, which experiences frequent floods and droughts. However, the complex hydrological processes of its distinct watersheds and limited data make it challenging to deliver highly‐performant hydrologic predictions using conventional models. Moreover, it remains uncertain where the limits of predictability are and whether recently‐popular deep learning approaches can offer significant improvements. Here, we tested the first instance of the hydrologic model based on long short‐term memory (LSTM) for 55 Indian watersheds, using a new dataset comprising forcing, attributes, and discharge data. Our results show that the LSTM model provides much‐improved performance compared to conventional models in India, providing a median Nash‐Sutcliffe efficiency (NSE) of 0.56. The LSTM model trained on all the watersheds is more favourable to those trained on individual or homogeneous watersheds, as it benefits from a broader range of hydrological processes and patterns in the input data. However, the LSTM model performs poorly for non‐perennial, large, and semi‐arid climate zone watersheds due to its inability to simulate the complex hydrological processes specific to these environments. Integrating lagged observations with the LSTM model (referred to as DI‐LSTM) improved the predictions in such watersheds and enhanced the median NSE to 0.76 by capturing the temporal dependencies and historical patterns that influence hydrological processes. Overall, the contrast of model performance across watersheds suggests major limitations could be associated with the quality of forcing data, and the slow flow or groundwater processes are highly important in the Indian subcontinent. Notably, both LSTM and DI‐LSTM models performed reasonably well for predictions in ungauged watersheds. The findings of this study demonstrate that data‐sparse countries, too, can benefit from big‐data deep learning and point out further avenues toward model improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情夏寒完成签到 ,获得积分10
刚刚
ZAy4gG发布了新的文献求助20
3秒前
liukang172发布了新的文献求助10
6秒前
嘿嘿嘿完成签到,获得积分10
8秒前
666完成签到 ,获得积分10
9秒前
哈哈完成签到,获得积分10
9秒前
10秒前
Lucas应助真找不到采纳,获得10
11秒前
AixGnad完成签到,获得积分10
13秒前
leek完成签到 ,获得积分10
14秒前
曾经的慕灵完成签到,获得积分10
15秒前
河西完成签到,获得积分10
17秒前
阿然完成签到,获得积分10
17秒前
jsdiohfsiodhg完成签到,获得积分10
17秒前
爱学习的小花生完成签到,获得积分10
19秒前
JYing完成签到 ,获得积分10
20秒前
eating完成签到,获得积分10
21秒前
随机完成签到,获得积分10
21秒前
23秒前
科研通AI5应助doubles采纳,获得10
23秒前
兮颜完成签到,获得积分10
24秒前
WFLLL完成签到,获得积分10
24秒前
胖丁完成签到,获得积分10
25秒前
坚强怀绿完成签到,获得积分10
25秒前
这课题真顺利完成签到 ,获得积分10
28秒前
wanmiao12发布了新的文献求助10
29秒前
含蓄听南完成签到 ,获得积分10
31秒前
keyan完成签到,获得积分10
31秒前
Jhinnnn完成签到,获得积分10
31秒前
暖羊羊Y完成签到 ,获得积分10
31秒前
34秒前
Kelly1426完成签到,获得积分10
35秒前
褚明雪发布了新的文献求助10
37秒前
爱笑孤容完成签到,获得积分10
37秒前
追寻青柏完成签到,获得积分10
37秒前
sungcin完成签到,获得积分10
38秒前
妙奇完成签到,获得积分10
38秒前
漠mo完成签到 ,获得积分10
38秒前
真真完成签到 ,获得积分10
40秒前
千寒完成签到,获得积分10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280685
关于积分的说明 10020554
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668