Deep learning with coherent VCSEL neural networks

计算机科学 人工神经网络 电子工程 人工智能 工程类
作者
Zaijun Chen,Alexander Sludds,Ronald Davis,Ian Christen,Liane Bernstein,Lamia Ateshian,Tobias Heuser,Niels Heermeier,James A. Lott,Stephan Reitzenstein,Ryan Hamerly,Dirk Englund
出处
期刊:Nature Photonics [Springer Nature]
卷期号:17 (8): 723-730 被引量:52
标识
DOI:10.1038/s41566-023-01233-w
摘要

Deep neural networks (DNNs) are reshaping the field of information processing. With their exponential growth challenging existing electronic hardware, optical neural networks (ONNs) are emerging to process DNN tasks in the optical domain with high clock rates, parallelism and low-loss data transmission. However, to explore the potential of ONNs, it is necessary to investigate the full-system performance incorporating the major DNN elements, including matrix algebra and nonlinear activation. Existing challenges to ONNs are high energy consumption due to low electro-optic (EO) conversion efficiency, low compute density due to large device footprint and channel crosstalk, and long latency due to the lack of inline nonlinearity. Here we experimentally demonstrate an ONN system that simultaneously overcomes all these challenges. We exploit neuron encoding with volume-manufactured micron-scale vertical-cavity surface-emitting laser (VCSEL) transmitter arrays that exhibit high EO conversion (<5 attojoule/symbol with $V_\pi$=4 mV), high operation bandwidth (up to 25 GS/s), and compact footprint (<0.01 mm$^2$ per device). Photoelectric multiplication allows low-energy matrix operations at the shot-noise quantum limit. Homodyne detection-based nonlinearity enables nonlinear activation with instantaneous response. The full-system energy efficiency and compute density reach 7 femtojoules per operation (fJ/OP) and 25 TeraOP/(mm$^2\cdot$ s), both representing a >100-fold improvement over state-of-the-art digital computers, with substantially several more orders of magnitude for future improvement. Beyond neural network inference, its feature of rapid weight updating is crucial for training deep learning models. Our technique opens an avenue to large-scale optoelectronic processors to accelerate machine learning tasks from data centers to decentralized edge devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤海未蓝发布了新的文献求助10
1秒前
1秒前
王青文应助丰富冰凡采纳,获得10
1秒前
同城代打发布了新的文献求助10
2秒前
Sofia完成签到 ,获得积分0
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
huo应助科研通管家采纳,获得10
3秒前
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
妮妮妮完成签到,获得积分10
3秒前
毛豆应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得30
3秒前
大个应助科研通管家采纳,获得10
3秒前
毛豆应助科研通管家采纳,获得10
3秒前
罐罐儿应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
4秒前
周老八发布了新的文献求助10
5秒前
生物牛马完成签到,获得积分20
6秒前
田様应助尊敬冬萱采纳,获得10
6秒前
patato发布了新的文献求助10
6秒前
haohao完成签到,获得积分10
6秒前
Singularity应助jessica采纳,获得10
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215