Fault Detection and Quality Inspection of Printed Circuit Board Using Yolo-v7 Algorithm of Deep Learning

卷积神经网络 印刷电路板 计算机科学 深度学习 过程(计算) 断层(地质) 最小边界框 算法 人工智能 故障检测与隔离 质量(理念) 人工神经网络 集合(抽象数据类型) 实时计算 图像(数学) 机器学习 程序设计语言 哲学 认识论 地震学 执行机构 地质学 操作系统
作者
Karim Kolachi,Malhar Khan,Shahjahan Alias Sarang,Aaqib Raza
标识
DOI:10.1109/imtic58887.2023.10178512
摘要

The requirements of the contemporary manufacturing environment where the delivery of 100% defect-free PCBs is expected, have increased the significance of the printed circuit boards (PCBs) inspection process. Billions of Electronic products are manufactured annually, and the success rate of proper working is 97 % out of 100%. The remaining 3% is faulty products and most faults occur due to PCBs. This is a huge loss for the company; it is therefore needed to overcome the problem. This research will conduct a study of the newest model YOLO v7 (You-Only-Look-Once) algorithm of deep learning to find out the solution to minimize the loss of the company, it is an advanced kind of image classification in which an end-to-end neural network identifies defects in an image and highlights them with bounding boxes. This work is presented for the quality inspection, different types of fault detection, and classification of PCBs. Deep learning algorithms, such as convolutional neural networks (CNN), due to their high accuracy and efficiency have achieved considerable attention. In this proposed approach a highly accurate dataset was taken from The Open Lab of Peking University. The data set includes 1386 images having six kinds of defects (open circuit, spur, short circuit, missing hole, mouse bite, and spurious copper). This research aims to bring a solution not to have faulty PCBs and further decrease the manufacturing cost and product waste and enhance the manufacturing process of the company.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
navvv发布了新的文献求助10
1秒前
jinoir发布了新的文献求助10
2秒前
科研通AI5应助Sophie采纳,获得10
3秒前
3秒前
荷月初六发布了新的文献求助20
3秒前
4秒前
lai完成签到,获得积分10
4秒前
波特卡斯D艾斯完成签到 ,获得积分10
5秒前
干亿先完成签到 ,获得积分10
5秒前
jubikbubik发布了新的文献求助10
5秒前
Jinnnnn完成签到,获得积分10
5秒前
GXS发布了新的文献求助10
6秒前
orixero应助inori采纳,获得10
8秒前
芒果完成签到,获得积分10
8秒前
Zzoe_S发布了新的文献求助30
8秒前
大个应助南昌黑人采纳,获得10
9秒前
研友_VZG7GZ应助糖糖采纳,获得10
10秒前
汉堡包应助Sunrise采纳,获得10
10秒前
10秒前
11秒前
潇洒的诗桃应助笨笨采纳,获得10
12秒前
qcck完成签到,获得积分10
13秒前
彭于晏应助navvv采纳,获得10
13秒前
13秒前
13秒前
you完成签到 ,获得积分10
14秒前
李爱国应助求助人采纳,获得10
14秒前
英俊的铭应助lucas采纳,获得10
14秒前
科研通AI5应助大块采纳,获得30
14秒前
15秒前
FashionBoy应助绿水杯采纳,获得10
15秒前
4444l完成签到,获得积分10
16秒前
16秒前
烟花应助大胆的书白采纳,获得10
16秒前
呐呐呐发布了新的文献求助10
16秒前
张星星发布了新的文献求助10
18秒前
搞科研的静静完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3702336
求助须知:如何正确求助?哪些是违规求助? 3252249
关于积分的说明 9878392
捐赠科研通 2964282
什么是DOI,文献DOI怎么找? 1625586
邀请新用户注册赠送积分活动 770101
科研通“疑难数据库(出版商)”最低求助积分说明 742762