亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics

功能(生物学) 人工神经网络 移动最小二乘法 固体力学 计算力学 计算机科学 应用数学 算法 数学 物理 有限元法 工程类 人工智能 结构工程 进化生物学 生物 热力学
作者
Jinshuai Bai,Timon Rabczuk,Ashish Gupta,Laith Alzubaidi,Yuantong Gu
出处
期刊:Computational Mechanics [Springer Nature]
卷期号:71 (3): 543-562 被引量:141
标识
DOI:10.1007/s00466-022-02252-0
摘要

Despite its rapid development, Physics-Informed Neural Network (PINN)-based computational solid mechanics is still in its infancy. In PINN, the loss function plays a critical role that significantly influences the performance of the predictions. In this paper, by using the Least Squares Weighted Residual (LSWR) method, we proposed a modified loss function, namely the LSWR loss function, which is tailored to a dimensionless form with only one manually determined parameter. Based on the LSWR loss function, an advanced PINN technique is developed for computational 2D and 3D solid mechanics. The performance of the proposed PINN technique with the LSWR loss function is tested through 2D and 3D (geometrically nonlinear) problems. Thoroughly studies and comparisons are conducted between the two existing loss functions, the energy-based loss function and the collocation loss function, and the proposed LSWR loss function. Through numerical experiments, we show that the PINN based on the LSWR loss function is effective, robust, and accurate for predicting both the displacement and stress fields. The source codes for the numerical examples in this work are available at https://github.com/JinshuaiBai/LSWR_loss_function_PINN/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情依白发布了新的文献求助10
15秒前
42秒前
NFS发布了新的文献求助10
49秒前
空儒完成签到 ,获得积分10
53秒前
54秒前
Ken发布了新的文献求助10
58秒前
1分钟前
1分钟前
默默曼冬发布了新的文献求助10
1分钟前
aayy完成签到,获得积分20
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
aayy关注了科研通微信公众号
1分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
隐形曼青应助momo采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
哈哈发布了新的文献求助30
4分钟前
小圭韦发布了新的文献求助10
4分钟前
南寅完成签到,获得积分10
5分钟前
5分钟前
默默曼冬完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
mirror应助小圭韦采纳,获得10
6分钟前
天雨流芳完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681628
求助须知:如何正确求助?哪些是违规求助? 5011683
关于积分的说明 15175918
捐赠科研通 4841236
什么是DOI,文献DOI怎么找? 2594994
邀请新用户注册赠送积分活动 1547971
关于科研通互助平台的介绍 1506006