Improving variant prioritization in exome analysis by entropy‐weighted ensemble of multiple tools

优先次序 外显子组 外显子组测序 计算机科学 计算生物学 队列 熵(时间箭头) 数据挖掘 表型 遗传学 生物 医学 基因 内科学 工程类 物理 管理科学 量子力学
作者
Yanjie Fan,Ying Zhou,Huili Liu,Xiaomei Luo,Ting Xu,Yu Sun,Tingting Yang,Linlin Chen,Xuefan Gu,Yongguo Yu
出处
期刊:Clinical Genetics [Wiley]
卷期号:103 (2): 190-199 被引量:1
标识
DOI:10.1111/cge.14257
摘要

Variant prioritization is a crucial step in the analysis of exome and genome sequencing. Multiple phenotype-driven tools have been developed to automate the variant prioritization process, but the efficacy of these tools in clinical setting with fuzzy phenotypic information and whether ensemble of these tools could outperform single algorithm remains to be assessed. A large rare disease cohort with heterogeneous phenotypic information, including a primary cohort of 1614 patients and a replication cohort of 1904 patients referred to exome sequencing, were recruited to assess the efficacy of variant prioritization and their ensemble. Three freely available tools-Exomiser, Xrare, and DeepPVP-and their ensemble were evaluated. The performance of all three tools was influenced by the attributes of phenotypic input. When combining these three tools by weighted-sum entropy method (EWE3), the ensemble outperformed any single algorithm, achieving a rate of 78% diagnostic variants in top 3 (13% improvement over current best performer, compared to Exomiser: 63%, Xrare: 65%, and DeepPVP: 51%), 88% in top 10 and 96% in top 30. The results were replicated in another independent cohort. Our study supports using entropy-weighted ensemble of multiple tools to improve variant prioritization and accelerate molecular diagnosis in exome/genome sequencing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助佳AOAOAO采纳,获得10
刚刚
所愿所得应助griffon采纳,获得10
1秒前
精明的满天完成签到 ,获得积分10
2秒前
2秒前
传奇3应助jie采纳,获得10
2秒前
nenoaowu发布了新的文献求助10
3秒前
3秒前
博闻完成签到,获得积分10
4秒前
mangludeyu完成签到 ,获得积分10
5秒前
5秒前
Moss完成签到,获得积分10
7秒前
剑指天涯完成签到,获得积分10
7秒前
7秒前
ly完成签到,获得积分10
9秒前
小四喜完成签到,获得积分10
10秒前
10秒前
wanggongxiu完成签到,获得积分10
10秒前
天涯完成签到 ,获得积分10
11秒前
打打应助nenoaowu采纳,获得80
12秒前
怕黑的楷瑞完成签到 ,获得积分10
13秒前
辞暮完成签到,获得积分10
13秒前
mangludeyu关注了科研通微信公众号
13秒前
明晨应助碎星采纳,获得10
15秒前
俊逸星月关注了科研通微信公众号
15秒前
柳条儿发布了新的文献求助10
16秒前
16秒前
辞暮发布了新的文献求助10
16秒前
18秒前
许婵发布了新的文献求助10
18秒前
Lore完成签到 ,获得积分10
20秒前
21秒前
AKN完成签到,获得积分10
22秒前
23秒前
sgt完成签到,获得积分10
24秒前
24秒前
dmsoli完成签到,获得积分20
25秒前
enterdawn完成签到,获得积分10
25秒前
25秒前
PAIDAXXXX完成签到,获得积分10
27秒前
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985