Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model

去壳 抗压强度 堆积 水泥 集成学习 人工智能 机器学习 材料科学 数学 环境科学 计算机科学 复合材料 化学 植物 生物 有机化学
作者
Qingfu Li,Zongming Song
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:382: 135279-135279 被引量:79
标识
DOI:10.1016/j.jclepro.2022.135279
摘要

By replacing cement in concrete production with rice husk ash (RHA), the amount of cement used and its environmental impact can be reduced. The objective of this study is to accurately determine the compressive strength of rice husk ash (RHA) concrete using a machine learning model. Stacking is an excellent fusion strategy. It uses meta-learner to better learn the prediction results of multiple base learners and improve the performance of the mode. In this research, a stacking ensemble learning-based compressive strength prediction model for rice husk ash (RHA) concrete is developed. The ensemble learning model is the first layer of the stacking model; the linear regression model is the second layer. The optimal configuration of base learners was experimentally determined, and the stacking model was contrasted with other mainstream methods. Using the base learner XGBoost model, the importance of the input feature variables was assessed. The findings reveal that the created stacking ensemble learning model can successfully fuse the prediction outputs of base learners and increase the predictive accuracy of the model. The performance evaluation indices of the established stacking model are as follows: RMSE = 2.344, MAE = 1.764, and R2 = 0. 987. The developed models were compared with previous studies and the model accuracy was better than previous studies. The developed model was applied to the new dataset and the model showed good performance. The cement and age are the two most important parameters impacting the compressive strength of rice husk ash (RHA) concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王伟娜发布了新的文献求助30
2秒前
2秒前
redglo完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
桐桐应助坦率的书南采纳,获得10
5秒前
Shuxueman发布了新的文献求助30
5秒前
小杭76应助kelly9110采纳,获得10
5秒前
7秒前
tigger完成签到 ,获得积分10
8秒前
8秒前
我是哈哈哈哈完成签到,获得积分10
9秒前
在水一方应助redglo采纳,获得10
11秒前
一片瓜地发布了新的文献求助10
13秒前
顾暖完成签到,获得积分10
14秒前
15秒前
FashionBoy应助YY采纳,获得10
17秒前
国防费完成签到 ,获得积分10
17秒前
17秒前
九月亦星完成签到 ,获得积分10
18秒前
wenzheng发布了新的文献求助10
19秒前
潇洒的白凝完成签到,获得积分10
21秒前
21秒前
21秒前
23秒前
23秒前
想毕业发布了新的文献求助10
23秒前
小槑槑完成签到,获得积分10
28秒前
呀呀呀发布了新的文献求助10
28秒前
香蕉觅云应助昧冒冰采纳,获得10
29秒前
Clifton完成签到 ,获得积分10
30秒前
sam完成签到,获得积分10
33秒前
34秒前
浮游应助欣欣采纳,获得10
34秒前
diupapa完成签到,获得积分10
36秒前
一片瓜地完成签到,获得积分10
37秒前
39秒前
小杭76应助ZXRGXY采纳,获得10
39秒前
小槑槑发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360