Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model

去壳 抗压强度 堆积 水泥 集成学习 人工智能 机器学习 材料科学 数学 环境科学 计算机科学 复合材料 化学 植物 生物 有机化学
作者
Qingfu Li,Zongming Song
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:382: 135279-135279 被引量:79
标识
DOI:10.1016/j.jclepro.2022.135279
摘要

By replacing cement in concrete production with rice husk ash (RHA), the amount of cement used and its environmental impact can be reduced. The objective of this study is to accurately determine the compressive strength of rice husk ash (RHA) concrete using a machine learning model. Stacking is an excellent fusion strategy. It uses meta-learner to better learn the prediction results of multiple base learners and improve the performance of the mode. In this research, a stacking ensemble learning-based compressive strength prediction model for rice husk ash (RHA) concrete is developed. The ensemble learning model is the first layer of the stacking model; the linear regression model is the second layer. The optimal configuration of base learners was experimentally determined, and the stacking model was contrasted with other mainstream methods. Using the base learner XGBoost model, the importance of the input feature variables was assessed. The findings reveal that the created stacking ensemble learning model can successfully fuse the prediction outputs of base learners and increase the predictive accuracy of the model. The performance evaluation indices of the established stacking model are as follows: RMSE = 2.344, MAE = 1.764, and R2 = 0. 987. The developed models were compared with previous studies and the model accuracy was better than previous studies. The developed model was applied to the new dataset and the model showed good performance. The cement and age are the two most important parameters impacting the compressive strength of rice husk ash (RHA) concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助一吃就饱采纳,获得30
1秒前
直率的迎梅完成签到,获得积分10
2秒前
hao发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
5秒前
6秒前
Orange应助UUUUUp采纳,获得10
7秒前
meng完成签到,获得积分10
8秒前
小草莓发布了新的文献求助10
9秒前
酒酒发布了新的文献求助10
9秒前
无花果应助温婉的篮球采纳,获得10
9秒前
魏凡之完成签到,获得积分10
10秒前
Frozen Flame发布了新的文献求助10
10秒前
完美世界应助缥缈南风采纳,获得10
11秒前
科研通AI5应助健壮银耳汤采纳,获得10
11秒前
12秒前
隐形曼青应助hao采纳,获得10
14秒前
无限涵梅完成签到 ,获得积分10
14秒前
深情安青应助小王采纳,获得10
15秒前
16秒前
16秒前
齐美丽完成签到 ,获得积分10
17秒前
wenyiboy完成签到,获得积分10
18秒前
Lanky发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
丁浩伦应助朱滨松采纳,获得10
21秒前
干净秋寒完成签到,获得积分20
21秒前
小黑完成签到,获得积分10
22秒前
小巧的柏柳完成签到 ,获得积分10
22秒前
22秒前
miko发布了新的文献求助10
24秒前
不安青牛应助干净秋寒采纳,获得10
25秒前
徐世军发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556936
求助须知:如何正确求助?哪些是违规求助? 3984706
关于积分的说明 12336876
捐赠科研通 3654781
什么是DOI,文献DOI怎么找? 2013309
邀请新用户注册赠送积分活动 1048324
科研通“疑难数据库(出版商)”最低求助积分说明 936747