Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model

去壳 抗压强度 堆积 水泥 集成学习 人工智能 机器学习 材料科学 数学 环境科学 计算机科学 复合材料 化学 植物 生物 有机化学
作者
Qingfu Li,Zongming Song
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:382: 135279-135279 被引量:79
标识
DOI:10.1016/j.jclepro.2022.135279
摘要

By replacing cement in concrete production with rice husk ash (RHA), the amount of cement used and its environmental impact can be reduced. The objective of this study is to accurately determine the compressive strength of rice husk ash (RHA) concrete using a machine learning model. Stacking is an excellent fusion strategy. It uses meta-learner to better learn the prediction results of multiple base learners and improve the performance of the mode. In this research, a stacking ensemble learning-based compressive strength prediction model for rice husk ash (RHA) concrete is developed. The ensemble learning model is the first layer of the stacking model; the linear regression model is the second layer. The optimal configuration of base learners was experimentally determined, and the stacking model was contrasted with other mainstream methods. Using the base learner XGBoost model, the importance of the input feature variables was assessed. The findings reveal that the created stacking ensemble learning model can successfully fuse the prediction outputs of base learners and increase the predictive accuracy of the model. The performance evaluation indices of the established stacking model are as follows: RMSE = 2.344, MAE = 1.764, and R2 = 0. 987. The developed models were compared with previous studies and the model accuracy was better than previous studies. The developed model was applied to the new dataset and the model showed good performance. The cement and age are the two most important parameters impacting the compressive strength of rice husk ash (RHA) concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caicai发布了新的文献求助10
1秒前
coolkid应助开心牛油果采纳,获得10
1秒前
21240713084发布了新的文献求助10
1秒前
ljljljlj完成签到,获得积分10
2秒前
2秒前
lee发布了新的文献求助10
2秒前
2秒前
王志威发布了新的文献求助10
2秒前
LR发布了新的文献求助20
2秒前
2秒前
美术监完成签到 ,获得积分10
3秒前
smartCH发布了新的文献求助10
3秒前
4秒前
4秒前
腼腆的大碗完成签到,获得积分10
5秒前
读心理学导致的完成签到,获得积分10
5秒前
雪白的威完成签到,获得积分10
5秒前
5秒前
6秒前
芬芬完成签到 ,获得积分10
6秒前
6秒前
AARON完成签到,获得积分10
6秒前
GXLong完成签到,获得积分10
6秒前
雷雷完成签到,获得积分10
6秒前
fy207发布了新的文献求助10
7秒前
7秒前
无聊的翠芙完成签到,获得积分10
7秒前
lm发布了新的文献求助10
7秒前
8秒前
yangg发布了新的文献求助10
8秒前
Lucas应助橙子采纳,获得10
8秒前
8秒前
8秒前
善学以致用应助美好焦采纳,获得10
8秒前
科目三应助smartCH采纳,获得10
8秒前
挡住所有坏运气888完成签到,获得积分10
9秒前
9秒前
9秒前
廖妙菱完成签到,获得积分10
9秒前
紫贝壳完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978