Prediction of compressive strength of rice husk ash concrete based on stacking ensemble learning model

去壳 抗压强度 堆积 水泥 集成学习 人工智能 机器学习 材料科学 数学 环境科学 计算机科学 复合材料 化学 植物 生物 有机化学
作者
Qingfu Li,Zongming Song
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:382: 135279-135279 被引量:40
标识
DOI:10.1016/j.jclepro.2022.135279
摘要

By replacing cement in concrete production with rice husk ash (RHA), the amount of cement used and its environmental impact can be reduced. The objective of this study is to accurately determine the compressive strength of rice husk ash (RHA) concrete using a machine learning model. Stacking is an excellent fusion strategy. It uses meta-learner to better learn the prediction results of multiple base learners and improve the performance of the mode. In this research, a stacking ensemble learning-based compressive strength prediction model for rice husk ash (RHA) concrete is developed. The ensemble learning model is the first layer of the stacking model; the linear regression model is the second layer. The optimal configuration of base learners was experimentally determined, and the stacking model was contrasted with other mainstream methods. Using the base learner XGBoost model, the importance of the input feature variables was assessed. The findings reveal that the created stacking ensemble learning model can successfully fuse the prediction outputs of base learners and increase the predictive accuracy of the model. The performance evaluation indices of the established stacking model are as follows: RMSE = 2.344, MAE = 1.764, and R2 = 0. 987. The developed models were compared with previous studies and the model accuracy was better than previous studies. The developed model was applied to the new dataset and the model showed good performance. The cement and age are the two most important parameters impacting the compressive strength of rice husk ash (RHA) concrete.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
feigev587完成签到 ,获得积分10
2秒前
3秒前
Jasper应助xiao123789采纳,获得10
3秒前
5秒前
017发布了新的文献求助10
5秒前
兴奋电脑完成签到 ,获得积分10
5秒前
6秒前
叮叮叮完成签到,获得积分10
7秒前
orixero应助朱由校采纳,获得10
7秒前
10秒前
YY发布了新的文献求助20
11秒前
从容安波发布了新的文献求助10
12秒前
轻松箴发布了新的文献求助10
12秒前
小八888完成签到,获得积分10
13秒前
我是老大应助Believe采纳,获得10
14秒前
15秒前
xuxieyu发布了新的文献求助10
15秒前
Frank完成签到,获得积分20
16秒前
16秒前
18秒前
海绵baobao完成签到,获得积分10
18秒前
啵啵虎完成签到,获得积分10
19秒前
20秒前
jimmy完成签到,获得积分10
20秒前
20秒前
NexusExplorer应助飞兰采纳,获得10
21秒前
晨曦发布了新的文献求助30
22秒前
22秒前
cwy发布了新的文献求助10
22秒前
和平发布了新的文献求助10
23秒前
Owen应助材1采纳,获得30
23秒前
乐乐乐乐乐乐应助jeep先生采纳,获得10
23秒前
muncy发布了新的文献求助10
24秒前
万能图书馆应助从容安波采纳,获得10
24秒前
xiao123789发布了新的文献求助10
25秒前
善学以致用应助cwy采纳,获得10
25秒前
lihongchi发布了新的文献求助10
26秒前
斯文败类应助hushengtan采纳,获得10
27秒前
科研通AI2S应助平凡的一天采纳,获得30
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797336
捐赠科研通 2447358
什么是DOI,文献DOI怎么找? 1301860
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194