Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer

宫颈癌 医学 比例危险模型 接收机工作特性 阶段(地层学) 癌症 生存分析 危险系数 随机森林 肿瘤科 内科学 试验装置 人工智能 置信区间 计算机科学 古生物学 生物
作者
Taotao Dong,Linlin Wang,Ruowen Li,Qingqing Liu,Yiyue Xu,Yuan Wang,Xinlin Jiao,Xiaofeng Li,Yiran Zhang,Youzhong Zhang,Kun Song,Xinggang Yang,Baoxia Cui
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Limited]
卷期号:2022: 1-14
标识
DOI:10.1155/2022/4364663
摘要

Cervical cancer ranks as the 4th most common female cancer worldwide. Early stage cervical cancer patients can be treated with operation, but clinical staging system is not a good predictor of patients' survival. We aimed to develop a novel prognostic model to predict the prognosis for operable cervical cancer patients with better accuracy than clinical staging system.A total of 13,952 operable cervical cancer patients were retrospectively enrolled in this study. The whole dataset was randomly split into a training set (n = 9,068, 65%), validation set (n = 2,442, 17.5%), and testing set (n = 2,442, 17.5%). Cox proportional hazard (CPH) model and random survival forest (RSF) model were used as baseline models for the prediction of overall survival (OS). Then, a deep survival learning model (DSLM) was developed for OS prediction. Finally, a novel prognostic model was explored based on this DSLM.The C-indexes for the CPH and RSF model were 0.731 and 0.753, respectively. DSLM, which had four layers that had 50 neurons in each layer, achieved a C-index of 0.782 in the validation set and a C-index of 0.758 in the testing set. The novel prognostic model based on DSLM showed better performances than the conventional clinical staging system (area under receiver operating curves were 0.826 and 0.689, respectively). Personalized survival curves for individual patient using this novel model also showed notably different survival slopes.Our study developed a novel, practical, personalized prognostic model for operable cervical cancer patients. This novel prognostic model may have the potential to provide a more prognostic information to oncologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的糖豆完成签到,获得积分10
刚刚
阉太狼完成签到,获得积分10
刚刚
1秒前
soory完成签到,获得积分10
2秒前
任性的傲柏完成签到,获得积分10
2秒前
lwk205完成签到,获得积分0
2秒前
3秒前
一一完成签到,获得积分10
3秒前
3秒前
3秒前
高中生完成签到,获得积分10
4秒前
4秒前
4秒前
希望天下0贩的0应助TT采纳,获得10
5秒前
xxegt完成签到 ,获得积分10
5秒前
6秒前
爱吃泡芙发布了新的文献求助10
6秒前
susu完成签到,获得积分10
8秒前
会神发布了新的文献求助10
8秒前
KK完成签到,获得积分10
9秒前
充电宝应助justin采纳,获得10
11秒前
12秒前
Ch完成签到 ,获得积分10
13秒前
15秒前
ajun完成签到,获得积分10
15秒前
15秒前
春江完成签到,获得积分10
15秒前
15秒前
漂亮的松思完成签到,获得积分20
18秒前
18秒前
xiuwen发布了新的文献求助10
19秒前
黑衣人的秘密完成签到,获得积分10
19秒前
19秒前
mushrooms119完成签到,获得积分10
20秒前
20秒前
榨菜发布了新的文献求助10
20秒前
Cindy应助体贴的夕阳采纳,获得10
20秒前
MEME完成签到,获得积分10
21秒前
zfzf0422发布了新的文献求助10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808