Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer

宫颈癌 医学 比例危险模型 接收机工作特性 阶段(地层学) 癌症 生存分析 危险系数 随机森林 肿瘤科 内科学 试验装置 人工智能 置信区间 计算机科学 古生物学 生物
作者
Taotao Dong,Linlin Wang,Ruowen Li,Qingqing Liu,Yiyue Xu,Yuan Wang,Xinlin Jiao,Xiaofeng Li,Yiran Zhang,Youzhong Zhang,Kun Song,Xinggang Yang,Baoxia Cui
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-14
标识
DOI:10.1155/2022/4364663
摘要

Cervical cancer ranks as the 4th most common female cancer worldwide. Early stage cervical cancer patients can be treated with operation, but clinical staging system is not a good predictor of patients' survival. We aimed to develop a novel prognostic model to predict the prognosis for operable cervical cancer patients with better accuracy than clinical staging system.A total of 13,952 operable cervical cancer patients were retrospectively enrolled in this study. The whole dataset was randomly split into a training set (n = 9,068, 65%), validation set (n = 2,442, 17.5%), and testing set (n = 2,442, 17.5%). Cox proportional hazard (CPH) model and random survival forest (RSF) model were used as baseline models for the prediction of overall survival (OS). Then, a deep survival learning model (DSLM) was developed for OS prediction. Finally, a novel prognostic model was explored based on this DSLM.The C-indexes for the CPH and RSF model were 0.731 and 0.753, respectively. DSLM, which had four layers that had 50 neurons in each layer, achieved a C-index of 0.782 in the validation set and a C-index of 0.758 in the testing set. The novel prognostic model based on DSLM showed better performances than the conventional clinical staging system (area under receiver operating curves were 0.826 and 0.689, respectively). Personalized survival curves for individual patient using this novel model also showed notably different survival slopes.Our study developed a novel, practical, personalized prognostic model for operable cervical cancer patients. This novel prognostic model may have the potential to provide a more prognostic information to oncologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
赵凌完成签到,获得积分10
3秒前
Shahid完成签到,获得积分20
3秒前
张 大头发布了新的文献求助10
4秒前
哩哩发布了新的文献求助10
4秒前
九木德完成签到 ,获得积分10
4秒前
脑洞疼应助XUAN采纳,获得10
4秒前
Mercury发布了新的文献求助10
6秒前
赵凌发布了新的文献求助10
6秒前
7秒前
孙意冉完成签到,获得积分10
9秒前
PATTOM发布了新的文献求助10
12秒前
12秒前
xixifu发布了新的文献求助10
12秒前
12秒前
Akim应助哩哩采纳,获得10
14秒前
15秒前
15秒前
干净南风发布了新的文献求助10
15秒前
16秒前
优美的跳跳糖完成签到 ,获得积分10
16秒前
xiaoxiaoz发布了新的文献求助10
19秒前
19秒前
liyu发布了新的文献求助10
19秒前
zhao完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
玉梅发布了新的文献求助10
21秒前
科研通AI5应助干净南风采纳,获得10
21秒前
22秒前
木由子发布了新的文献求助10
23秒前
23秒前
wyiii完成签到,获得积分10
24秒前
XUAN发布了新的文献求助10
24秒前
华仔应助怕黑的雪莲采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238