Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer

宫颈癌 医学 比例危险模型 接收机工作特性 阶段(地层学) 癌症 生存分析 危险系数 随机森林 肿瘤科 内科学 试验装置 人工智能 置信区间 计算机科学 古生物学 生物
作者
Taotao Dong,Linlin Wang,Ruowen Li,Qingqing Liu,Yiyue Xu,Yuan Wang,Xinlin Jiao,Xiaofeng Li,Yiran Zhang,Youzhong Zhang,Kun Song,Xinggang Yang,Baoxia Cui
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-14
标识
DOI:10.1155/2022/4364663
摘要

Cervical cancer ranks as the 4th most common female cancer worldwide. Early stage cervical cancer patients can be treated with operation, but clinical staging system is not a good predictor of patients' survival. We aimed to develop a novel prognostic model to predict the prognosis for operable cervical cancer patients with better accuracy than clinical staging system.A total of 13,952 operable cervical cancer patients were retrospectively enrolled in this study. The whole dataset was randomly split into a training set (n = 9,068, 65%), validation set (n = 2,442, 17.5%), and testing set (n = 2,442, 17.5%). Cox proportional hazard (CPH) model and random survival forest (RSF) model were used as baseline models for the prediction of overall survival (OS). Then, a deep survival learning model (DSLM) was developed for OS prediction. Finally, a novel prognostic model was explored based on this DSLM.The C-indexes for the CPH and RSF model were 0.731 and 0.753, respectively. DSLM, which had four layers that had 50 neurons in each layer, achieved a C-index of 0.782 in the validation set and a C-index of 0.758 in the testing set. The novel prognostic model based on DSLM showed better performances than the conventional clinical staging system (area under receiver operating curves were 0.826 and 0.689, respectively). Personalized survival curves for individual patient using this novel model also showed notably different survival slopes.Our study developed a novel, practical, personalized prognostic model for operable cervical cancer patients. This novel prognostic model may have the potential to provide a more prognostic information to oncologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
happyAlice应助别偷我增肌粉采纳,获得10
1秒前
shuangma发布了新的文献求助10
2秒前
Jessica关注了科研通微信公众号
2秒前
从容的文涛完成签到,获得积分10
2秒前
Logan完成签到,获得积分10
6秒前
andrele应助迷人绿茶采纳,获得10
6秒前
ROMANTIC完成签到 ,获得积分10
6秒前
念兹在兹发布了新的文献求助10
6秒前
7秒前
赘婿应助maybe采纳,获得10
7秒前
8秒前
勇哥你好完成签到,获得积分20
10秒前
星辰发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
12秒前
Hello应助qsxy采纳,获得10
12秒前
所所应助别偷我增肌粉采纳,获得10
13秒前
供电发布了新的文献求助10
14秒前
14秒前
所所应助鱼鱼色采纳,获得10
16秒前
小乌龟完成签到,获得积分10
17秒前
英姑应助别来无恙采纳,获得10
18秒前
小张同学完成签到,获得积分10
18秒前
博修发布了新的文献求助10
18秒前
纳米纤维素完成签到,获得积分10
19秒前
19秒前
boron完成签到,获得积分10
19秒前
无情曼易完成签到,获得积分20
20秒前
Singularity应助zzy17779140061采纳,获得10
20秒前
Rubby应助星辰采纳,获得10
20秒前
Hello应助木云梓采纳,获得10
21秒前
21秒前
Yu完成签到 ,获得积分10
22秒前
bwl发布了新的文献求助10
22秒前
无花果应助Growth采纳,获得10
23秒前
开放雪碧完成签到,获得积分10
23秒前
speak完成签到,获得积分10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152