亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Forest-Based DQN for Cooling Water System Energy Saving Control in HVAC

计算机科学 冷却塔 能量(信号处理) 暖通空调 人工智能 控制(管理) 水冷 控制理论(社会学) 模拟 数学 空调 统计 工程类 机械工程
作者
Zhicong Han,Qiming Fu,Jianping Chen,Yunzhe Wang,You Lu,Hongjie Wu,Hongguan Gui
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1787-1787 被引量:2
标识
DOI:10.3390/buildings12111787
摘要

Currently, reinforcement learning (RL) has shown great potential in energy saving in HVAC systems. However, in most cases, RL takes a relatively long period to explore the environment before obtaining an excellent control policy, which may lead to an increase in cost. To reduce the unnecessary waste caused by RL methods in exploration, we extended the deep forest-based deep Q-network (DF-DQN) from the prediction problem to the control problem, optimizing the running frequency of the cooling water pump and cooling tower in the cooling water system. In DF-DQN, it uses the historical data or expert experience as a priori knowledge to train a deep forest (DF) classifier, and then combines the output of DQN to attain the control frequency, where DF can map the original action space of DQN to a smaller one, so DF-DQN converges faster and has a better energy-saving effect than DQN in the early stage. In order to verify the performance of DF-DQN, we constructed a cooling water system model based on historical data. The experimental results show that DF-DQN can realize energy savings from the first year, while DQN realized savings from the third year. DF-DQN’s energy-saving effect is much better than DQN in the early stage, and it also has a good performance in the latter stage. In 20 years, DF-DQN can improve the energy-saving effect by 11.035% on average every year, DQN can improve by 7.972%, and the model-based control method can improve by 13.755%. Compared with traditional RL methods, DF-DQN can avoid unnecessary waste caused by exploration in the early stage and has a good performance in general, which indicates that DF-DQN is more suitable for engineering practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
jjdeng发布了新的文献求助10
7秒前
jjdeng完成签到,获得积分10
13秒前
哭泣灯泡完成签到,获得积分10
19秒前
28秒前
41秒前
46秒前
47秒前
衣裳薄发布了新的文献求助10
51秒前
hhh完成签到 ,获得积分10
1分钟前
1分钟前
003完成签到,获得积分10
1分钟前
1分钟前
001完成签到,获得积分10
1分钟前
义气雁完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
002完成签到,获得积分10
1分钟前
万能图书馆应助Dec采纳,获得10
1分钟前
Ava应助不攻自破采纳,获得10
1分钟前
Sid完成签到,获得积分0
2分钟前
sk4ajd发布了新的文献求助10
2分钟前
2分钟前
2分钟前
不攻自破发布了新的文献求助10
2分钟前
璇别完成签到,获得积分10
2分钟前
852应助无聊又夏采纳,获得10
2分钟前
3分钟前
3分钟前
CipherSage应助璇别采纳,获得10
3分钟前
无聊又夏发布了新的文献求助10
3分钟前
3分钟前
Dec发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
科研通AI5应助guoze采纳,获得10
3分钟前
无聊又夏完成签到,获得积分10
4分钟前
lovelife完成签到,获得积分10
4分钟前
深情安青应助guoze采纳,获得30
4分钟前
默默白桃完成签到 ,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965704
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214