Deep Forest-Based DQN for Cooling Water System Energy Saving Control in HVAC

计算机科学 冷却塔 能量(信号处理) 暖通空调 人工智能 控制(管理) 水冷 控制理论(社会学) 模拟 数学 空调 统计 工程类 机械工程
作者
Zhicong Han,Qiming Fu,Jianping Chen,Yunzhe Wang,You Lu,Hongjie Wu,Hongguan Gui
出处
期刊:Buildings [MDPI AG]
卷期号:12 (11): 1787-1787 被引量:2
标识
DOI:10.3390/buildings12111787
摘要

Currently, reinforcement learning (RL) has shown great potential in energy saving in HVAC systems. However, in most cases, RL takes a relatively long period to explore the environment before obtaining an excellent control policy, which may lead to an increase in cost. To reduce the unnecessary waste caused by RL methods in exploration, we extended the deep forest-based deep Q-network (DF-DQN) from the prediction problem to the control problem, optimizing the running frequency of the cooling water pump and cooling tower in the cooling water system. In DF-DQN, it uses the historical data or expert experience as a priori knowledge to train a deep forest (DF) classifier, and then combines the output of DQN to attain the control frequency, where DF can map the original action space of DQN to a smaller one, so DF-DQN converges faster and has a better energy-saving effect than DQN in the early stage. In order to verify the performance of DF-DQN, we constructed a cooling water system model based on historical data. The experimental results show that DF-DQN can realize energy savings from the first year, while DQN realized savings from the third year. DF-DQN’s energy-saving effect is much better than DQN in the early stage, and it also has a good performance in the latter stage. In 20 years, DF-DQN can improve the energy-saving effect by 11.035% on average every year, DQN can improve by 7.972%, and the model-based control method can improve by 13.755%. Compared with traditional RL methods, DF-DQN can avoid unnecessary waste caused by exploration in the early stage and has a good performance in general, which indicates that DF-DQN is more suitable for engineering practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yufanhui应助wvwvwv采纳,获得10
2秒前
3秒前
Bright24发布了新的文献求助10
4秒前
Dream完成签到,获得积分10
5秒前
佟白易发布了新的文献求助10
5秒前
CipherSage应助豆豆浆采纳,获得10
6秒前
6秒前
6秒前
beibei应助香芋派采纳,获得10
7秒前
奥拉夫发布了新的文献求助20
8秒前
彭大啦啦发布了新的文献求助10
8秒前
乐乐应助公西香露采纳,获得10
9秒前
黄志敏完成签到,获得积分10
10秒前
sun发布了新的文献求助10
11秒前
11秒前
LIU完成签到,获得积分10
12秒前
Freya发布了新的文献求助10
12秒前
赘婿应助小萝卜采纳,获得10
13秒前
Bright24完成签到,获得积分10
14秒前
曾经二娘发布了新的文献求助10
17秒前
17秒前
18秒前
师无益完成签到,获得积分20
18秒前
swy完成签到,获得积分10
20秒前
光亮的柚子完成签到,获得积分20
22秒前
公西香露发布了新的文献求助10
22秒前
23秒前
23秒前
小萝卜发布了新的文献求助10
23秒前
小白不白发布了新的文献求助50
24秒前
一只豆沙包完成签到,获得积分10
24秒前
24秒前
彭大啦啦完成签到,获得积分10
25秒前
27秒前
28秒前
健壮的鸵鸟完成签到 ,获得积分20
29秒前
tz发布了新的文献求助10
30秒前
自由的刺猬完成签到,获得积分10
31秒前
32秒前
飞飞鱼发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919