HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks

异常检测 超图 异常(物理) 计算机科学 人工智能 模式识别(心理学) 数学 物理 组合数学 凝聚态物理
作者
Sadaf Sadeghian,Xiaoxiao Li,Margo Seltzer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02087
摘要

Identifying unusual brain activity is a crucial task in neuroscience research, as it aids in the early detection of brain disorders. It is common to represent brain networks as graphs, and researchers have developed various graph-based machine learning methods for analyzing them. However, the majority of existing graph learning tools for the brain face a combination of the following three key limitations. First, they focus only on pairwise correlations between regions of the brain, limiting their ability to capture synchronized activity among larger groups of regions. Second, they model the brain network as a static network, overlooking the temporal changes in the brain. Third, most are designed only for classifying brain networks as healthy or disordered, lacking the ability to identify abnormal brain activity patterns linked to biomarkers associated with disorders. To address these issues, we present HyperBrain, an unsupervised anomaly detection framework for temporal hypergraph brain networks. HyperBrain models fMRI time series data as temporal hypergraphs capturing dynamic higher-order interactions. It then uses a novel customized temporal walk (BrainWalk) and neural encodings to detect abnormal co-activations among brain regions. We evaluate the performance of HyperBrain in both synthetic and real-world settings for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder(ADHD). HyperBrain outperforms all other baselines on detecting abnormal co-activations in brain networks. Furthermore, results obtained from HyperBrain are consistent with clinical research on these brain disorders. Our findings suggest that learning temporal and higher-order connections in the brain provides a promising approach to uncover intricate connectivity patterns in brain networks, offering improved diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渊思发布了新的文献求助10
1秒前
2秒前
至秦完成签到,获得积分10
2秒前
3秒前
bkagyin应助大胆觅风采纳,获得30
3秒前
Chine-Wang完成签到,获得积分10
3秒前
漂彭完成签到,获得积分10
3秒前
上官若男应助RebeccaHe采纳,获得10
4秒前
aaswsdw完成签到,获得积分10
5秒前
英姑应助fenghp采纳,获得30
5秒前
wbhou发布了新的文献求助10
6秒前
6秒前
隐形曼青应助洋子采纳,获得10
6秒前
苏木发布了新的文献求助30
7秒前
7秒前
aaswsdw发布了新的文献求助10
8秒前
9秒前
ww完成签到,获得积分10
9秒前
受伤松鼠完成签到,获得积分10
12秒前
安白枫发布了新的文献求助10
13秒前
美羊羊发布了新的文献求助10
13秒前
ww发布了新的文献求助10
14秒前
kk应助ding采纳,获得30
14秒前
香蕉觅云应助ding采纳,获得10
14秒前
小蘑菇应助苏木采纳,获得10
15秒前
15秒前
16秒前
16秒前
冷傲迎梦完成签到,获得积分10
17秒前
17秒前
18秒前
暗号完成签到 ,获得积分10
18秒前
科研通AI2S应助ZZDXXX采纳,获得10
19秒前
19秒前
洋子发布了新的文献求助10
20秒前
帅气大神发布了新的文献求助10
21秒前
21秒前
22秒前
widesky777发布了新的文献求助10
22秒前
烂瞓完成签到,获得积分10
22秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328181
求助须知:如何正确求助?哪些是违规求助? 2958278
关于积分的说明 8589965
捐赠科研通 2636636
什么是DOI,文献DOI怎么找? 1443053
科研通“疑难数据库(出版商)”最低求助积分说明 668500
邀请新用户注册赠送积分活动 655733