清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks

异常检测 超图 异常(物理) 计算机科学 人工智能 模式识别(心理学) 数学 物理 组合数学 凝聚态物理
作者
Sadaf Sadeghian,Xiaoxiao Li,Margo Seltzer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02087
摘要

Identifying unusual brain activity is a crucial task in neuroscience research, as it aids in the early detection of brain disorders. It is common to represent brain networks as graphs, and researchers have developed various graph-based machine learning methods for analyzing them. However, the majority of existing graph learning tools for the brain face a combination of the following three key limitations. First, they focus only on pairwise correlations between regions of the brain, limiting their ability to capture synchronized activity among larger groups of regions. Second, they model the brain network as a static network, overlooking the temporal changes in the brain. Third, most are designed only for classifying brain networks as healthy or disordered, lacking the ability to identify abnormal brain activity patterns linked to biomarkers associated with disorders. To address these issues, we present HyperBrain, an unsupervised anomaly detection framework for temporal hypergraph brain networks. HyperBrain models fMRI time series data as temporal hypergraphs capturing dynamic higher-order interactions. It then uses a novel customized temporal walk (BrainWalk) and neural encodings to detect abnormal co-activations among brain regions. We evaluate the performance of HyperBrain in both synthetic and real-world settings for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder(ADHD). HyperBrain outperforms all other baselines on detecting abnormal co-activations in brain networks. Furthermore, results obtained from HyperBrain are consistent with clinical research on these brain disorders. Our findings suggest that learning temporal and higher-order connections in the brain provides a promising approach to uncover intricate connectivity patterns in brain networks, offering improved diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
顺利的雁梅完成签到 ,获得积分10
9秒前
13秒前
量子星尘发布了新的文献求助10
17秒前
37秒前
57秒前
1分钟前
两个榴莲完成签到,获得积分0
1分钟前
1分钟前
RLLLLLLL完成签到 ,获得积分10
1分钟前
1分钟前
yangxi发布了新的文献求助10
1分钟前
研友_VZG7GZ应助yangxi采纳,获得10
1分钟前
yangxi完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
BinBlues完成签到,获得积分10
2分钟前
3分钟前
3分钟前
vicky完成签到 ,获得积分10
3分钟前
冷傲半邪完成签到,获得积分10
3分钟前
3分钟前
nuliguan完成签到 ,获得积分10
3分钟前
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
zpc猪猪完成签到,获得积分10
5分钟前
5分钟前
fabius0351完成签到 ,获得积分10
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877