HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks

异常检测 超图 异常(物理) 计算机科学 人工智能 模式识别(心理学) 数学 物理 组合数学 凝聚态物理
作者
Sadaf Sadeghian,Xiaoxiao Li,Margo Seltzer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02087
摘要

Identifying unusual brain activity is a crucial task in neuroscience research, as it aids in the early detection of brain disorders. It is common to represent brain networks as graphs, and researchers have developed various graph-based machine learning methods for analyzing them. However, the majority of existing graph learning tools for the brain face a combination of the following three key limitations. First, they focus only on pairwise correlations between regions of the brain, limiting their ability to capture synchronized activity among larger groups of regions. Second, they model the brain network as a static network, overlooking the temporal changes in the brain. Third, most are designed only for classifying brain networks as healthy or disordered, lacking the ability to identify abnormal brain activity patterns linked to biomarkers associated with disorders. To address these issues, we present HyperBrain, an unsupervised anomaly detection framework for temporal hypergraph brain networks. HyperBrain models fMRI time series data as temporal hypergraphs capturing dynamic higher-order interactions. It then uses a novel customized temporal walk (BrainWalk) and neural encodings to detect abnormal co-activations among brain regions. We evaluate the performance of HyperBrain in both synthetic and real-world settings for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder(ADHD). HyperBrain outperforms all other baselines on detecting abnormal co-activations in brain networks. Furthermore, results obtained from HyperBrain are consistent with clinical research on these brain disorders. Our findings suggest that learning temporal and higher-order connections in the brain provides a promising approach to uncover intricate connectivity patterns in brain networks, offering improved diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研小白采纳,获得10
2秒前
2秒前
4秒前
悦耳的翠芙完成签到,获得积分10
4秒前
清爽的真完成签到,获得积分10
4秒前
我ppp发布了新的文献求助10
6秒前
6秒前
科研通AI6应助1280065188采纳,获得10
7秒前
7秒前
8秒前
可爱草丛应助阳光诗珊采纳,获得10
9秒前
在水一方应助Lee采纳,获得10
11秒前
1111发布了新的文献求助10
11秒前
Haru完成签到 ,获得积分10
11秒前
111发布了新的文献求助10
12秒前
天真稀发布了新的文献求助10
13秒前
义气发卡发布了新的文献求助10
14秒前
Ava应助彼岸花开采纳,获得30
14秒前
16秒前
共享精神应助英勇安筠采纳,获得10
18秒前
eleanor发布了新的文献求助10
20秒前
不安心情发布了新的文献求助10
22秒前
22秒前
23秒前
星辰大海应助唐唐采纳,获得10
23秒前
26秒前
27秒前
Hello应助末末采纳,获得20
27秒前
包子凯越完成签到,获得积分10
28秒前
不三不四完成签到,获得积分10
31秒前
超级瑶瑶完成签到,获得积分10
33秒前
浮游应助有害学术辣鸡采纳,获得10
35秒前
Akim应助不安心情采纳,获得10
35秒前
37秒前
38秒前
1111完成签到,获得积分20
40秒前
41秒前
封印发布了新的文献求助10
41秒前
迅速的岩发布了新的文献求助10
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870