HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks

异常检测 超图 异常(物理) 计算机科学 人工智能 模式识别(心理学) 数学 物理 组合数学 凝聚态物理
作者
Sadaf Sadeghian,Xiaoxiao Li,Margo Seltzer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02087
摘要

Identifying unusual brain activity is a crucial task in neuroscience research, as it aids in the early detection of brain disorders. It is common to represent brain networks as graphs, and researchers have developed various graph-based machine learning methods for analyzing them. However, the majority of existing graph learning tools for the brain face a combination of the following three key limitations. First, they focus only on pairwise correlations between regions of the brain, limiting their ability to capture synchronized activity among larger groups of regions. Second, they model the brain network as a static network, overlooking the temporal changes in the brain. Third, most are designed only for classifying brain networks as healthy or disordered, lacking the ability to identify abnormal brain activity patterns linked to biomarkers associated with disorders. To address these issues, we present HyperBrain, an unsupervised anomaly detection framework for temporal hypergraph brain networks. HyperBrain models fMRI time series data as temporal hypergraphs capturing dynamic higher-order interactions. It then uses a novel customized temporal walk (BrainWalk) and neural encodings to detect abnormal co-activations among brain regions. We evaluate the performance of HyperBrain in both synthetic and real-world settings for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder(ADHD). HyperBrain outperforms all other baselines on detecting abnormal co-activations in brain networks. Furthermore, results obtained from HyperBrain are consistent with clinical research on these brain disorders. Our findings suggest that learning temporal and higher-order connections in the brain provides a promising approach to uncover intricate connectivity patterns in brain networks, offering improved diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要文献啊完成签到 ,获得积分10
4秒前
大方荟发布了新的文献求助10
5秒前
Graham完成签到,获得积分10
5秒前
6秒前
10秒前
丝垚完成签到 ,获得积分10
13秒前
苯基乙胺完成签到,获得积分10
15秒前
hyh完成签到,获得积分10
18秒前
18秒前
zhang完成签到 ,获得积分10
19秒前
sci123完成签到,获得积分20
20秒前
椰子狗完成签到,获得积分10
21秒前
嘻嘻叮完成签到,获得积分10
21秒前
23秒前
何博发布了新的文献求助10
25秒前
小蘑菇应助机灵水卉采纳,获得10
27秒前
波比不菜完成签到,获得积分10
28秒前
张helen125完成签到,获得积分20
28秒前
29秒前
cyndi发布了新的文献求助10
31秒前
执着的忆雪完成签到 ,获得积分10
35秒前
Jasmineyfz完成签到 ,获得积分10
37秒前
杀出个黎明举报求助违规成功
37秒前
lzx举报求助违规成功
37秒前
yx_cheng举报求助违规成功
37秒前
37秒前
muzi完成签到,获得积分10
38秒前
典雅宛秋完成签到 ,获得积分10
38秒前
38秒前
淡定完成签到,获得积分10
41秒前
健壮的冬瓜关注了科研通微信公众号
43秒前
flj7038完成签到,获得积分0
43秒前
淡定发布了新的文献求助10
45秒前
zhang完成签到,获得积分10
46秒前
lyx完成签到 ,获得积分10
47秒前
wanci应助Lee采纳,获得30
50秒前
单纯乞完成签到,获得积分10
53秒前
科研通AI2S应助淡定采纳,获得10
53秒前
planto完成签到,获得积分10
54秒前
ambrose37完成签到 ,获得积分10
56秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268