Orbital angular momentum superimposed mode recognition based on multi-label image classification

光学 角动量 模式(计算机接口) 图像处理 物理 计算机科学 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 量子力学 操作系统
作者
Wei Liu,Chuanfu Tu,Yawen Liu,Zhiwei Ye
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (22): 38187-38187
标识
DOI:10.1364/oe.541716
摘要

Orbital angular momentum (OAM) multiplexing technology has great potential in high capacity optical communication. OAM superimposed mode can extend communication channels and thus enhance the capacity, and accurate recognition of multi-OAM superimposed mode at the receiver is very crucial. However, traditional methods are inefficient and complex for the recognition task. Machine learning and deep learning can offer fast, accurate and adaptable recognition, but they also face challenges. At present, the OAM mode recognition mainly focus on single OAM mode and ± l superimposed dual-OAM mode, while few researches on multi-OAM superimposed mode, due to the limitations of single-object image classification techniques and the diversity of features to recognize. To this end, we develop a recognition method combined with multi-label image classification to accurately recognize multi-OAM superimposed mode vortex beams. Firstly, we create datasets of intensity distribution map of three-OAM and four-OAM superimposed mode vortex beams based on numerical simulations and experimental acqusitions. Then we design a progressive channel-spatial attention (PCSA) model, which incorporates a progressive training strategy and two weighted attention modules. For the numerical simulation datasets, our model achieves the highest average recognition accuracy of 94.9% and 91.2% for three-OAM and four-OAM superimposed mode vortex beams with different transmission distances and noise strengths respectively. The highest experimental average recognition accuracy for three-OAM superimposed mode achieves 92.7%, which agrees with the numerical result very well. Furthermore, our model significantly outperforms in most metrics compared with ConvNeXt, and all experiments are within the affordable range of computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在云里爱与歌完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
帅哥的事情少管完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
科研通AI2S应助晨曦采纳,获得10
2秒前
聪明的远锋完成签到,获得积分10
2秒前
3秒前
彭于晏应助点点白帆采纳,获得10
4秒前
WL发布了新的文献求助10
4秒前
白曳发布了新的文献求助10
4秒前
Mr_I完成签到,获得积分10
5秒前
5秒前
小药师发布了新的文献求助30
7秒前
Jay应助南风不竞采纳,获得30
7秒前
never完成签到,获得积分10
8秒前
Lolo发布了新的文献求助10
9秒前
情怀应助传统的开山采纳,获得10
9秒前
9秒前
huihui完成签到 ,获得积分10
10秒前
兴奋的定帮完成签到 ,获得积分10
10秒前
李爱国应助hai采纳,获得10
10秒前
11秒前
never发布了新的文献求助10
11秒前
壶户发布了新的文献求助50
13秒前
13秒前
14秒前
14秒前
烟花应助pink采纳,获得10
16秒前
16秒前
17秒前
abcd完成签到,获得积分20
18秒前
dan1029发布了新的文献求助10
18秒前
王锦源发布了新的文献求助50
18秒前
18秒前
研友_8y2G0L发布了新的文献求助10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259819
求助须知:如何正确求助?哪些是违规求助? 2901303
关于积分的说明 8314986
捐赠科研通 2570798
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853