清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Orbital angular momentum superimposed mode recognition based on multi-label image classification

光学 角动量 模式(计算机接口) 图像处理 物理 计算机科学 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 量子力学 操作系统
作者
Wei Liu,Chuanfu Tu,Yawen Liu,Zhiwei Ye
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:32 (22): 38187-38187
标识
DOI:10.1364/oe.541716
摘要

Orbital angular momentum (OAM) multiplexing technology has great potential in high capacity optical communication. OAM superimposed mode can extend communication channels and thus enhance the capacity, and accurate recognition of multi-OAM superimposed mode at the receiver is very crucial. However, traditional methods are inefficient and complex for the recognition task. Machine learning and deep learning can offer fast, accurate and adaptable recognition, but they also face challenges. At present, the OAM mode recognition mainly focus on single OAM mode and ± l superimposed dual-OAM mode, while few researches on multi-OAM superimposed mode, due to the limitations of single-object image classification techniques and the diversity of features to recognize. To this end, we develop a recognition method combined with multi-label image classification to accurately recognize multi-OAM superimposed mode vortex beams. Firstly, we create datasets of intensity distribution map of three-OAM and four-OAM superimposed mode vortex beams based on numerical simulations and experimental acqusitions. Then we design a progressive channel-spatial attention (PCSA) model, which incorporates a progressive training strategy and two weighted attention modules. For the numerical simulation datasets, our model achieves the highest average recognition accuracy of 94.9% and 91.2% for three-OAM and four-OAM superimposed mode vortex beams with different transmission distances and noise strengths respectively. The highest experimental average recognition accuracy for three-OAM superimposed mode achieves 92.7%, which agrees with the numerical result very well. Furthermore, our model significantly outperforms in most metrics compared with ConvNeXt, and all experiments are within the affordable range of computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrLuffy完成签到 ,获得积分10
1秒前
852应助Rayoo采纳,获得10
8秒前
13秒前
liu完成签到,获得积分10
15秒前
sxx发布了新的文献求助10
17秒前
18秒前
瘦瘦发布了新的文献求助10
18秒前
眯眯眼的安雁完成签到 ,获得积分10
27秒前
piaoaxi完成签到 ,获得积分10
28秒前
wjx完成签到 ,获得积分10
34秒前
louyu完成签到 ,获得积分0
35秒前
37秒前
甜美砖家完成签到 ,获得积分10
40秒前
41秒前
tan发布了新的文献求助20
42秒前
56秒前
荀万声完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
风清扬应助科研通管家采纳,获得10
1分钟前
1分钟前
凉面完成签到 ,获得积分10
1分钟前
默默完成签到 ,获得积分10
1分钟前
妇产科医生完成签到 ,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
whuhustwit完成签到,获得积分10
2分钟前
xdd完成签到 ,获得积分10
2分钟前
2分钟前
sxx完成签到,获得积分10
3分钟前
3分钟前
cqmuluo发布了新的文献求助30
3分钟前
昔昔完成签到 ,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
风清扬应助科研通管家采纳,获得10
3分钟前
3分钟前
Rayoo发布了新的文献求助10
3分钟前
Benhnhk21发布了新的文献求助10
3分钟前
Rayoo完成签到,获得积分10
3分钟前
3分钟前
小新小新完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839