已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Orbital angular momentum superimposed mode recognition based on multi-label image classification

光学 角动量 模式(计算机接口) 图像处理 物理 计算机科学 人工智能 图像(数学) 模式识别(心理学) 计算机视觉 量子力学 操作系统
作者
Wei Liu,Chuanfu Tu,Yawen Liu,Zhiwei Ye
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:32 (22): 38187-38187
标识
DOI:10.1364/oe.541716
摘要

Orbital angular momentum (OAM) multiplexing technology has great potential in high capacity optical communication. OAM superimposed mode can extend communication channels and thus enhance the capacity, and accurate recognition of multi-OAM superimposed mode at the receiver is very crucial. However, traditional methods are inefficient and complex for the recognition task. Machine learning and deep learning can offer fast, accurate and adaptable recognition, but they also face challenges. At present, the OAM mode recognition mainly focus on single OAM mode and ± l superimposed dual-OAM mode, while few researches on multi-OAM superimposed mode, due to the limitations of single-object image classification techniques and the diversity of features to recognize. To this end, we develop a recognition method combined with multi-label image classification to accurately recognize multi-OAM superimposed mode vortex beams. Firstly, we create datasets of intensity distribution map of three-OAM and four-OAM superimposed mode vortex beams based on numerical simulations and experimental acqusitions. Then we design a progressive channel-spatial attention (PCSA) model, which incorporates a progressive training strategy and two weighted attention modules. For the numerical simulation datasets, our model achieves the highest average recognition accuracy of 94.9% and 91.2% for three-OAM and four-OAM superimposed mode vortex beams with different transmission distances and noise strengths respectively. The highest experimental average recognition accuracy for three-OAM superimposed mode achieves 92.7%, which agrees with the numerical result very well. Furthermore, our model significantly outperforms in most metrics compared with ConvNeXt, and all experiments are within the affordable range of computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得30
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
yupengh发布了新的文献求助10
1秒前
乐乐应助伶俐如冰采纳,获得10
1秒前
2秒前
Dsunflower完成签到 ,获得积分10
2秒前
3秒前
4秒前
深情安青应助仁爱的寒风采纳,获得10
5秒前
霜糖发布了新的文献求助10
6秒前
7秒前
yupengh完成签到,获得积分10
7秒前
yzm11发布了新的文献求助10
8秒前
inclubs发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
充电宝应助秀儿采纳,获得10
9秒前
9秒前
桃桃奶盖发布了新的文献求助10
10秒前
10秒前
qqq发布了新的文献求助10
12秒前
zjy完成签到,获得积分10
12秒前
曹梦龙发布了新的文献求助10
13秒前
14秒前
geogydeniel发布了新的文献求助100
14秒前
15秒前
XZYSA完成签到,获得积分10
15秒前
16秒前
桐桐应助yao采纳,获得10
16秒前
了了发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
33333完成签到,获得积分10
18秒前
botion发布了新的文献求助10
19秒前
20秒前
量子星尘发布了新的文献求助80
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957536
求助须知:如何正确求助?哪些是违规求助? 4218933
关于积分的说明 13131992
捐赠科研通 4001782
什么是DOI,文献DOI怎么找? 2189998
邀请新用户注册赠送积分活动 1204910
关于科研通互助平台的介绍 1116517