Carbon-Spaced Tandem-Disulfide Bond Bridge Design Addresses Limitations of Homodimer Prodrug Nanoassemblies: Enhancing Both Stability and Activatability

化学 二硫键 串联 前药 纳米技术 组合化学 生物化学 复合材料 材料科学
作者
Hao Zhang,Tian Liu,Yitong Sun,Shuo Wang,Wenjing Wang,Zhiyu Kuang,Mengyuan Duan,Tengda Du,Mengyu Liu,Linsheng Wu,Fei Sun,Jingzhe Sheng,Zhonggui He,Jin Sun
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (32): 22675-22688 被引量:6
标识
DOI:10.1021/jacs.4c07312
摘要

Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates. Therefore, designing chemical linkages that ensure both stable assembly and rapid drug release remains challenging. To address this paradox of stable assembly and rapid drug release in RHPNs, we developed carbon-spaced double-disulfide bond (CSDD)-bridged RHPNs (CSDD-RHPNs) with two carbon-spaces. Pilot studies showed that CSDD-RHPNs with two carbon-spaces exhibited enhanced assembly stability, reduction-responsive drug release, and improved selective toxicity compared to α-/γ-position single disulfide bond bridged RHPNs. Based on these findings, CSDD-RHPNs with four and six carbon-spaces were designed to further investigate the properties of CSDD-RHPNs. These CSDD-RHPNs exhibited excellent assembly ability, safety, and prolonged circulation. Particularly, CSDD-RHPNs with two carbon-spaces displayed the best antitumor efficacy on 4T1 and B16–F10 tumor-bearing mice. CSDD chemical linkages offer novel perspectives on the rational design of RHPNs, potentially overcoming the design limitations regarding contradictory assembly ability and drug release rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pearl完成签到,获得积分10
刚刚
1秒前
背书强发布了新的文献求助10
2秒前
andars0828完成签到,获得积分10
3秒前
gy发布了新的文献求助10
4秒前
4秒前
yudabaoer完成签到,获得积分10
5秒前
AAA完成签到,获得积分10
5秒前
搜集达人应助每文采纳,获得10
7秒前
呆呆发布了新的文献求助10
8秒前
yihuifa完成签到 ,获得积分10
8秒前
9秒前
脑洞疼应助玛卡采纳,获得10
13秒前
希望天下0贩的0应助Clouder采纳,获得10
14秒前
研友_VZG7GZ应助kai采纳,获得10
16秒前
高兴的幻竹完成签到,获得积分10
16秒前
清脆靳完成签到,获得积分10
17秒前
ccalvintan完成签到,获得积分10
18秒前
焱焱不忘完成签到 ,获得积分10
19秒前
General完成签到 ,获得积分10
19秒前
我是老大应助库洛洛采纳,获得30
21秒前
21秒前
22秒前
激流勇进wb完成签到 ,获得积分10
23秒前
Zayro完成签到,获得积分10
26秒前
浅斟低唱发布了新的文献求助10
26秒前
27秒前
劲秉应助kk采纳,获得10
27秒前
每文发布了新的文献求助10
27秒前
李爱国应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
Singularity应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
33秒前
CipherSage应助剪影改采纳,获得10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676958
求助须知:如何正确求助?哪些是违规求助? 3230982
关于积分的说明 9793559
捐赠科研通 2942079
什么是DOI,文献DOI怎么找? 1613001
邀请新用户注册赠送积分活动 761381
科研通“疑难数据库(出版商)”最低求助积分说明 736816