Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management

TRPV1型 神经病理性疼痛 医学 瞬时受体电位通道 神经科学 慢性疼痛 药理学 生物信息学 心理学 受体 生物 内科学
作者
Md. Mahbubur Rahman,Youn Yi Jo,Yong Ho Kim,Chul‐Kyu Park
出处
期刊:Life Sciences [Elsevier]
卷期号:355: 122954-122954 被引量:3
标识
DOI:10.1016/j.lfs.2024.122954
摘要

Neuropathic pain, a common symptom of several disorders, exerts a substantial socioeconomic burden worldwide. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel predominantly ex-pressed in nociceptive neurons, plays a pivotal role in nociception, by detecting various endogenous and exogenous stimuli, including heat, pro-inflammatory mediators, and physical stressors. Dysregulation of TRPV1 signaling further contributes to the pathophysiology of neuropathic pain. Therefore, targeting TRPV1 is a promising strategy for developing novel analgesics with improved efficacy and safety profiles. Several pharmacological approaches to modulate TRPV1 activity, including agonists, antagonists, and biological TRPV1 RNA interference (RNAi, small interfering RNA [siRNA]) have been explored. Despite preclinical success, the clinical translation of TRPV1-targeted therapies has encountered challenges, including hyperthermia, hypothermia, pungency, and desensitization. Nevertheless, ongoing research efforts aim to refine TRPV1-targeted interventions through structural modifications, development of selective modulators, and discovery of natural, peptide-based drug candidates. Herein, we provide guidance for researchers and clinicians involved in the development of new interventions specifically targeting TRPV1 by reviewing the existing literature and highlighting current research activities. This study further discusses potential future research endeavors for enhancing the efficacy, safety, and tolerability of TRPV1 candidates, and thereby facilitates the translation of these discoveries into effective clinical interventions to alleviate neuropathic pain disorders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愿景发布了新的文献求助10
1秒前
善学以致用应助马户牙采纳,获得10
1秒前
tl完成签到,获得积分10
2秒前
NexusExplorer应助老王采纳,获得10
2秒前
Orange应助曾无忧采纳,获得10
2秒前
科研通AI5应助晓晓采纳,获得10
3秒前
3秒前
生动的霸完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
思源应助阿Q采纳,获得10
5秒前
6秒前
胡琰彦发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
Cissy完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
Mp4发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
宋丽娟发布了新的文献求助10
10秒前
小林太郎应助张三采纳,获得50
10秒前
10秒前
宓之云发布了新的文献求助10
11秒前
11秒前
11秒前
Labubu完成签到 ,获得积分10
11秒前
qwe1108发布了新的文献求助10
12秒前
qwe1108发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512922
求助须知:如何正确求助?哪些是违规求助? 3095320
关于积分的说明 9227480
捐赠科研通 2790349
什么是DOI,文献DOI怎么找? 1531168
邀请新用户注册赠送积分活动 711316
科研通“疑难数据库(出版商)”最低求助积分说明 706735