AIML Enabled Rapid Vehicle Aerodynamics Design Improvements

空气动力学 计算机科学 航空航天工程 汽车工程 工程类
作者
Sridhar Bijjala
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-28-0007
摘要

<div class="section abstract"><div class="htmlview paragraph">The integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies has significantly changed various industries. This study demonstrates the application of a Convolutional Neural Network (CNN) model in Computational Fluid Dynamics (CFD) to predict the drag coefficient of a complete vehicle profile. We have developed a design advisor that uses a custom 3D CNN with a U-net architecture in the DEP MeshWorks environment to predict drag coefficients (Cd) based on car shapes. This model understands the relationship between car shapes and air drag coefficients calculated using computational fluid dynamics (CFD).</div><div class="htmlview paragraph">The AI/ML-based design advisor feature has the potential to significantly decrease the time required for predicting drag coefficients by conducting CFD calculations. During the initial development phase, it will serve as an efficient tool for analyzing the correlation between multiple design proposals and aerodynamic drag forces within a short time frame. Additionally, the interactive AI/ML tool helps to streamline the creation of necessary shape parameters with minimal input and helps optimize the design of the vehicle to achieve the desired coefficient of drag values.</div><div class="htmlview paragraph">In summary, the implementation of MeshWorks AI/ML-based design advisor system will aid analysis engineers in assessing the vehicle's coefficient of drag values, while also enabling parametrization and optimization of the design. This advancement has the potential to significantly reduce processing time and alleviate the inherent procedural complexities associated with the traditional methods.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
badada发布了新的文献求助10
刚刚
刘家成发布了新的文献求助10
1秒前
Beauty完成签到 ,获得积分10
2秒前
3秒前
ycs完成签到 ,获得积分10
4秒前
quan发布了新的文献求助10
4秒前
刘家成完成签到,获得积分20
4秒前
5秒前
明天儿发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
9秒前
Hui发布了新的文献求助10
9秒前
10秒前
kuankuan发布了新的文献求助10
10秒前
一罐樱桃酱完成签到,获得积分10
10秒前
1234发布了新的文献求助10
10秒前
安渝完成签到 ,获得积分10
11秒前
清水胖子发布了新的文献求助10
11秒前
fengw420完成签到,获得积分10
12秒前
乐乐应助刘家成采纳,获得10
12秒前
12秒前
fd163c应助刘阿呆采纳,获得10
13秒前
句小点发布了新的文献求助30
13秒前
alixyue发布了新的文献求助10
13秒前
大模型应助小小鱼采纳,获得10
13秒前
生动映波发布了新的文献求助10
14秒前
宋帮琦关注了科研通微信公众号
14秒前
大模型应助jiajia采纳,获得10
16秒前
长安完成签到,获得积分10
17秒前
18秒前
小小完成签到,获得积分10
18秒前
19秒前
19秒前
通研科发布了新的文献求助10
19秒前
20秒前
Hello应助yoozii采纳,获得10
20秒前
wy完成签到,获得积分10
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755384
求助须知:如何正确求助?哪些是违规求助? 3298445
关于积分的说明 10105664
捐赠科研通 3013093
什么是DOI,文献DOI怎么找? 1654979
邀请新用户注册赠送积分活动 789331
科研通“疑难数据库(出版商)”最低求助积分说明 753273