Revisit Anything: Visual Place Recognition via Image Segment Retrieval

计算机科学 人工智能 计算机视觉 图像(数学) 情报检索 模式识别(心理学)
作者
Kartik Garg,Sai Shubodh Puligilla,Shishir Kolathaya,Madhava Krishna,Sourav Garg
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.18049
摘要

Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小曹硕士发布了新的文献求助10
1秒前
slb1319完成签到,获得积分10
1秒前
大只00发布了新的文献求助10
1秒前
demon应助无限的宫苴采纳,获得10
1秒前
qindanyan完成签到,获得积分10
2秒前
小蘑菇应助冥月采纳,获得10
2秒前
打打应助haha采纳,获得10
3秒前
怕黑誉完成签到,获得积分10
3秒前
微笑可乐发布了新的文献求助10
3秒前
发嗲的黑夜完成签到,获得积分10
4秒前
田召祥发布了新的文献求助10
4秒前
热心克莉丝完成签到,获得积分10
6秒前
CR7应助yu采纳,获得20
7秒前
wuyu完成签到,获得积分10
7秒前
丁丁完成签到 ,获得积分10
8秒前
ysssbq完成签到,获得积分10
9秒前
9秒前
sss驳回了unique应助
10秒前
Doctor.Xie完成签到,获得积分10
10秒前
竹心蜓完成签到,获得积分10
11秒前
Rain完成签到,获得积分10
11秒前
12秒前
英姑应助木木采纳,获得10
12秒前
mao应助泡泡糖采纳,获得20
12秒前
12秒前
12秒前
柯一一应助大只00采纳,获得10
13秒前
谢琉圭发布了新的文献求助10
13秒前
热心市民小红花应助yrll采纳,获得10
13秒前
13秒前
小曹硕士完成签到,获得积分20
15秒前
15秒前
15秒前
隐形曼青应助微笑可乐采纳,获得10
15秒前
Ava应助我我我采纳,获得10
15秒前
满意的青枫完成签到,获得积分10
16秒前
在水一方应助子车友绿采纳,获得10
17秒前
17秒前
美丽无血完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154