Revisit Anything: Visual Place Recognition via Image Segment Retrieval

计算机科学 人工智能 计算机视觉 图像(数学) 情报检索 模式识别(心理学)
作者
Kartik Garg,Sai Shubodh Puligilla,Shishir Kolathaya,Madhava Krishna,Sourav Garg
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.18049
摘要

Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助圈圈采纳,获得10
1秒前
时尚的蚂蚁完成签到,获得积分10
1秒前
流年完成签到 ,获得积分10
1秒前
MADKAI发布了新的文献求助10
1秒前
xunxunmimi完成签到,获得积分10
2秒前
2秒前
2秒前
刘星星发布了新的文献求助10
3秒前
CodeCraft应助科研菜鸟采纳,获得20
3秒前
zyyyyyyyyyyy完成签到,获得积分10
4秒前
5秒前
研友_8yN60L发布了新的文献求助30
5秒前
打打应助柳七采纳,获得10
6秒前
零零二完成签到 ,获得积分10
6秒前
韭菜盒子发布了新的文献求助10
7秒前
Maestro_S完成签到,获得积分0
7秒前
volzzz发布了新的文献求助10
7秒前
wgglegg完成签到,获得积分10
7秒前
科研通AI5应助小胖鱼采纳,获得10
7秒前
酷波er应助黄超采纳,获得10
7秒前
7秒前
大智若愚啊完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
彬彬发布了新的文献求助10
8秒前
健壮丹妗完成签到 ,获得积分10
8秒前
Orange应助铸一字错采纳,获得10
8秒前
8秒前
Accept应助阿烨采纳,获得10
10秒前
欧阳小枫发布了新的文献求助10
11秒前
12秒前
Heidi完成签到 ,获得积分10
12秒前
见雨鱼发布了新的文献求助10
12秒前
学术扛把子完成签到 ,获得积分10
12秒前
Lucas应助陈某某采纳,获得10
12秒前
尊敬的钥匙完成签到,获得积分10
13秒前
14秒前
14秒前
赘婿应助无情的白桃采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740