Revisit Anything: Visual Place Recognition via Image Segment Retrieval

计算机科学 人工智能 计算机视觉 图像(数学) 情报检索 模式识别(心理学)
作者
Kartik Garg,Sai Shubodh Puligilla,Shishir Kolathaya,Madhava Krishna,Sourav Garg
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.18049
摘要

Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助任一采纳,获得10
1秒前
w8816完成签到,获得积分10
1秒前
叶萧辰完成签到,获得积分10
3秒前
4秒前
4秒前
bakos完成签到,获得积分10
4秒前
5秒前
Akim应助北斗HH采纳,获得10
5秒前
6秒前
6秒前
椰椰芋泥酱完成签到 ,获得积分10
7秒前
无花果应助尊敬的冬瓜采纳,获得10
7秒前
牛马发布了新的文献求助10
8秒前
9秒前
10秒前
科研通AI2S应助oh233采纳,获得10
11秒前
皓月当空发布了新的文献求助30
11秒前
12秒前
JamesPei应助TheDay采纳,获得10
12秒前
12秒前
12秒前
丞丞汁儿发布了新的文献求助10
13秒前
yo1nang发布了新的文献求助10
13秒前
听寒发布了新的文献求助10
15秒前
木冉发布了新的文献求助10
15秒前
北斗HH发布了新的文献求助10
15秒前
等待洙发布了新的文献求助10
16秒前
Cookie完成签到,获得积分10
16秒前
田様应助爱撒娇的无施采纳,获得10
18秒前
JK157完成签到,获得积分10
19秒前
Cookie发布了新的文献求助30
20秒前
江峰发布了新的文献求助10
21秒前
韦灵珊完成签到,获得积分20
22秒前
22秒前
22秒前
24秒前
24秒前
25秒前
听寒完成签到,获得积分10
25秒前
熙欢完成签到 ,获得积分10
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514