Research on Large-scale Structured and Unstructured Data Processing based on Large Language Model

计算机科学 变压器 非结构化数据 信息抽取 人工智能 语言模型 情报检索 自然语言处理 数据挖掘 机器学习 大数据 物理 量子力学 电压
作者
Bohang Li,Gaozhe Jiang,Ningxin Li,Chaoda Song
标识
DOI:10.20944/preprints202407.1364.v1
摘要

Since the beginning of the internet era, there has been an explosion of growth in structured data (such as numbers, symbols, and labels) as well as unstructured data (including images, videos, and text). Efficient and accurate mixed query of these two types of data is a key technology to achieve high-quality information retrieval, and it is also a major challenge that needs to be solved urgently in the industry. In this study, we employ an advanced Transformer model that combines strategies and fine-tuning techniques for multi-task learning. Specifically, the model is first pre-trained on a large-scale, general-purpose dataset to learn different types of data representations and basic language comprehension skills. After that, we fine-tuned the parameters of the model to better suit these specific data processing tasks for specific application scenarios, such as image annotation, video content analysis, and structured data query. At the heart of the model is the self-attention mechanism, which allows the model to automatically emphasize the important parts and ignore irrelevant information when processing the input data. In addition, we have introduced task-specific adaptation layers that are designed to add additional processing power to the original Transformer architecture, such as a semantic analysis layer for unstructured text data and a relational extraction layer for structured data. This combination of general pre-training and task-specific fine-tuning allows the model to flexibly process and integrate information from different data sources, improving processing efficiency and accuracy. Experimental results show that the model performs well in a variety of data processing tasks, significantly improves the accuracy and efficiency of information retrieval, and verifies the strong potential and adaptability of large language models in processing mixed data types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zyk完成签到,获得积分10
刚刚
害羞小懒猪完成签到,获得积分10
1秒前
邓国阳发布了新的文献求助10
2秒前
General完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
Xman完成签到,获得积分10
4秒前
完美梨愁发布了新的文献求助10
4秒前
ohhhh发布了新的文献求助10
5秒前
饱满羊青完成签到,获得积分10
6秒前
7秒前
依居完成签到,获得积分10
8秒前
激情的便当完成签到 ,获得积分10
9秒前
李慕尧发布了新的文献求助10
9秒前
CipherSage应助czh采纳,获得10
9秒前
9秒前
山河发布了新的文献求助20
11秒前
13秒前
13秒前
13秒前
hy完成签到,获得积分10
14秒前
邓国阳完成签到,获得积分10
15秒前
15秒前
冷艳雪卉发布了新的文献求助10
16秒前
无奈尔曼发布了新的文献求助10
16秒前
17秒前
丰富的千凡完成签到,获得积分20
19秒前
樂酉发布了新的文献求助10
20秒前
阿乾完成签到,获得积分10
21秒前
cccsp完成签到,获得积分10
21秒前
科研通AI5应助山河采纳,获得10
24秒前
27秒前
27秒前
29秒前
czh发布了新的文献求助10
31秒前
33秒前
Dr.feng关注了科研通微信公众号
33秒前
彭于晏应助callmefather采纳,获得10
34秒前
yyyalles应助Dragonfln采纳,获得20
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672517
求助须知:如何正确求助?哪些是违规求助? 3228818
关于积分的说明 9782056
捐赠科研通 2939247
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736174