清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MHIPM: Accurate Prediction of Microbe-Host Interactions Using Multiview Features from a Heterogeneous Microbial Network

寄主(生物学) 计算机科学 人工智能 计算生物学 生物 生态学
作者
Jie Pan,Guangming Zhang,Yong Yang,Wenli Yang,Ning Mao,Zhu‐Hong You,Jie Feng,Shiwei Wang,Yanmei Sun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01296
摘要

Current studies have demonstrated that microbe-host interactions (MHIs) play important roles in human public health. Therefore, identifying the interactions between microbes and hosts is beneficial to understanding the role of the microbiome and their underlying mechanisms. However, traditional wet-lab experimental approaches are insufficient for large-scale exploration of candidate microbes, as they are costly, laborious, and time-consuming. Thus, it is critical to prioritize microbe-interacting hosts by computational approaches for further biological experimental validation. In this work, we proposed a novel deep learning-based method called MHIPM, to predict MHIs by utilizing multisource biological information. Specifically, we first constructed a heterogeneous microbial network that consisted of human proteins, viruses, bacteriophages (phages), and pathogenic bacteria. Next, we used one of the largest protein language models, ESM-2, and a document embedding model, doc2vec, combined with a self-attention mechanism to extract the interview features from protein sequences. Then, an inductive learning-based model, GraphSAGE, was used to capture the intraview features from the heterogeneous network. Experimental results on three prediction tasks indicated that the MHIPM model consistently achieved better performance than seven baseline algorithms and its four variants. In addition, case studies and molecular docking experiments for two human proteins further confirmed the effectiveness of our model. In conclusion, MHIPM is an efficient and robust method in predicting MHIs and provides plausible candidate microbes for biological experiments. MHIPM is available at https://github.com/JIENWU/MHIPM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助xun采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
xxiao完成签到 ,获得积分10
14秒前
46秒前
konosuba完成签到,获得积分10
50秒前
zxt发布了新的文献求助10
50秒前
云止完成签到,获得积分20
1分钟前
nano完成签到 ,获得积分10
1分钟前
李健的小迷弟应助云止采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
2分钟前
鲲鹏完成签到 ,获得积分10
2分钟前
3分钟前
云止发布了新的文献求助10
3分钟前
zxt发布了新的文献求助10
3分钟前
zxt完成签到,获得积分10
4分钟前
Krim完成签到 ,获得积分10
4分钟前
俭朴的乐巧完成签到 ,获得积分10
4分钟前
4分钟前
研友_Z1eDgZ完成签到,获得积分10
4分钟前
好名字完成签到,获得积分10
4分钟前
含糊的茹妖完成签到 ,获得积分10
5分钟前
5分钟前
chichenglin完成签到 ,获得积分10
5分钟前
xiw发布了新的文献求助10
5分钟前
24K纯帅完成签到,获得积分10
5分钟前
秋夜临完成签到,获得积分10
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
研友_ZbP41L完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
xun发布了新的文献求助10
6分钟前
6分钟前
天天快乐应助xun采纳,获得10
6分钟前
李志全完成签到 ,获得积分10
6分钟前
Artin完成签到,获得积分10
6分钟前
hml123完成签到,获得积分10
6分钟前
jlwang完成签到,获得积分10
6分钟前
6分钟前
xun发布了新的文献求助10
6分钟前
Damon完成签到 ,获得积分10
6分钟前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288478
求助须知:如何正确求助?哪些是违规求助? 2925820
关于积分的说明 8423365
捐赠科研通 2596904
什么是DOI,文献DOI怎么找? 1416721
科研通“疑难数据库(出版商)”最低求助积分说明 659488
邀请新用户注册赠送积分活动 641878