Prediction of 28-day all-cause mortality in heart failure patients with Clostridioides difficile infection using machine learning models: evidence from the MIMIC-IV database

梭菌纲 医学 心力衰竭 数据库 内科学 急诊医学 计算机科学
作者
Caiping Shi,Qiong Jie,Hongsong Zhang,Xinying Zhang,Wen‐Jang Chu,Chen Liu,Zhihui Qian,Xuejiang Gu
出处
期刊:Cardiology [S. Karger AG]
卷期号:: 1-1
标识
DOI:10.1159/000540994
摘要

Introduction: Heart failure (HF) may induce bowel hypoperfusion, leading to hypoxia of the villa of the bowel wall and the occurrence of Clostridioides difficile infection (CDI). However, the risk factors for the development of CDI in HF patients have yet to be fully illustrated, especially because of a lack of evidence from real-world data. Methods: Clinical data and survival situations of HF patients with CDI admitted to ICU were extracted from the Medical Information Mart for Intensive Care (MIMIC)-IV database. For developing a model that can predict 28-day all-cause mortality in HF patients with CDI, the Recursive Feature Elimination with Cross-Validation (RFE-CV) method was used for feature selection. And nine machine learning (ML) algorithms, including logistic regression (LR), decision tree, Bayesian, adaptive boosting, random forest (RF), gradient boosting decision tree, XGBoost, light gradient boosting machine, and categorical boosting, were applied for model construction. After training and hyperparameter optimization of the models through grid search 5-fold cross-validation, the performance of models was evaluated by the area under curve (AUC), accuracy, sensitivity, specificity, precision, negative predictive value, and F1 score. Furthermore, the SHapley Additive exPlanations (SHAP) method was used to interpret the optimal model. Results: A total of 526 HF patients with CDI were included in the study, of whom 99 cases (18.8%) experienced death within 28 days. Eighteen of the 57 variables were selected for the model construction algorithm for model construction. Among the ML models considered, the RF model emerged as the optimal model achieving the accuracy, F1-score, and AUC values of 0.821, 0.596, and 0.864, respectively. The net benefit of the model surpassed other models at 16%–22% threshold probabilities based on decision curve analysis. According to the importance of features in the RF model, red blood cell distribution width, blood urea nitrogen, Simplified Acute Physiology Score II, Sequential Organ Failure Assessment, and white blood cell count were highlighted as the five most influential variables. Conclusions: We developed ML models to predict 28-day all-cause mortality in HF patients associated with CDI in the ICU, which are more effective than the conventional LR model. The RF model has the best performance among all the ML models employed. It may be useful to help clinicians identify high-risk HF patients with CDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wmszhd完成签到,获得积分10
刚刚
jason应助长情的一刀采纳,获得10
刚刚
刚刚
须野发布了新的文献求助10
1秒前
you一发布了新的文献求助10
1秒前
drjj完成签到 ,获得积分10
2秒前
深情安青应助甜甜的紫丝采纳,获得10
2秒前
real发布了新的文献求助10
2秒前
WWWWW完成签到,获得积分10
2秒前
无声瀑布完成签到,获得积分10
2秒前
自由月亮完成签到 ,获得积分10
2秒前
Ternura发布了新的文献求助10
3秒前
InfoNinja应助Stageruner采纳,获得30
4秒前
有热心愿意完成签到,获得积分10
4秒前
safire完成签到,获得积分10
4秒前
fendy应助悠悠采纳,获得50
4秒前
怪味薯片发布了新的文献求助10
4秒前
zx关注了科研通微信公众号
5秒前
cwm完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
小夏咕噜完成签到,获得积分10
7秒前
李怀玉发布了新的文献求助10
8秒前
bkagyin应助小知了采纳,获得10
9秒前
希望天下0贩的0应助real采纳,获得10
9秒前
Ansong完成签到,获得积分10
9秒前
老白完成签到,获得积分10
10秒前
10秒前
劳模完成签到 ,获得积分10
11秒前
TAboo完成签到,获得积分10
11秒前
11秒前
汉堡包应助you一采纳,获得10
11秒前
dingding发布了新的文献求助10
11秒前
梦在远方完成签到 ,获得积分10
12秒前
若酒发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
连鸿煊发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384