磷光
材料科学
发光
水溶液
荧光粉
磷光有机发光二极管
猝灭(荧光)
光化学
荧光
纳米技术
光电子学
化学
有机化学
光学
物理
作者
Mei Cai,Yijie Qiu,Feiming Li,Shunyou Cai,Zhixiong Cai
标识
DOI:10.1021/acsami.4c09567
摘要
Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet–singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.
科研通智能强力驱动
Strongly Powered by AbleSci AI