Modelling and numerical simulation of sequencing strategies for connected and autonomous vehicles at signal-free intersections

信号(编程语言) 计算机科学 计算机模拟 模拟 程序设计语言
作者
Jiaqi Zhang,Q. Yang
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad61cf
摘要

Abstract The signal-free intersections employ connected and automated vehicle technology to manage vehicles passing through the intersection. Due to conflicting traffic flows in opposition directions, a proper sequencing of Connected and Autonomous Vehicles (CAVs) at signal-free intersections becomes critical to impacting intersection traffic performance. Based on an examination of CAV queueing rules under the most common sequencing strategies of First-Come-First-Serve (FCFS) and Longest-Queue-First (LQF), commonly employed as benchmarks for evaluating diverse innovative approaches to signal-free intersections, we propose a Dynamic-Queue-Service (DQS) strategy that is tailored to accommodate high traffic demand. To explicitly elucidate the impact of diverse traffic demand in conflicting directions on the queue uncertainty and stochasticity of CAVs, as well as to investigate how various sequencing strategies influence the equity of CAV traffic at signal-free intersections with regard to CAV queueing dynamics under different strategies, we have developed a double-input traffic queueing model and derived a range of metrics, including the queue length, delay, conditional queue length, and variance of queue length. In addition, for the three strategies, we performed a series of numerical simulations to investigate the queueing process of CAVs at signal-free intersections. Numerical results show that under different levels of traffic demand in the conflicting directions, the FCFS, LQF, and DQS strategies output diverse traffic queueing performances, and the DQS strategy is confirmed to be well-suited for the situation of high traffic demand in both conflicting directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你不知道发布了新的文献求助30
1秒前
困_zzzzzz完成签到 ,获得积分10
1秒前
科目三应助猪猪hero采纳,获得10
1秒前
调研昵称发布了新的文献求助10
2秒前
喜悦中道应助cjh258819采纳,获得10
2秒前
3秒前
小二郎应助小刘不笨采纳,获得10
3秒前
傲娇的云朵完成签到,获得积分10
3秒前
panda完成签到,获得积分10
4秒前
tangsuyun发布了新的文献求助10
4秒前
SYLH应助lx采纳,获得10
4秒前
anan_0528完成签到 ,获得积分10
4秒前
晓军发布了新的文献求助10
4秒前
李双艳发布了新的文献求助10
4秒前
wddddd完成签到,获得积分10
5秒前
5秒前
5秒前
感动的世平完成签到,获得积分10
7秒前
可爱的函函应助一一采纳,获得10
7秒前
7秒前
zhu完成签到,获得积分10
8秒前
俏皮的龙猫完成签到 ,获得积分10
8秒前
8秒前
SciGPT应助认真的一刀采纳,获得10
8秒前
9秒前
9秒前
甲基正离子完成签到,获得积分10
10秒前
hzl完成签到,获得积分10
10秒前
Lam完成签到,获得积分10
10秒前
大白发布了新的文献求助10
10秒前
10秒前
李爱国应助Hu采纳,获得10
11秒前
11秒前
小欧医生完成签到,获得积分10
11秒前
12秒前
12秒前
老肥完成签到,获得积分10
13秒前
易安发布了新的文献求助10
13秒前
洋洋洋完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678