已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review

医学 卵巢癌 人工智能 医学物理学 工作流程 肿瘤科 放射科 内科学 妇科 癌症 计算机科学 数据库
作者
F. Moro,Marianna Ciancia,Drieda Zaçe,Marica Vagni,Huong Elena Tran,Maria Teresa Giudice,Sofia Gambigliani Zoccoli,F. Mascilini,Francesca Ciccarone,Luca Boldrini,F. D’Antonio,Giovanni Scambia,A. C. Testa
出处
期刊:International Journal of Cancer [Wiley]
卷期号:155 (10): 1832-1845 被引量:6
标识
DOI:10.1002/ijc.35092
摘要

Abstract The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS‐AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open‐source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression‐free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感谢甜甜绮兰转发科研通微信,获得积分50
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
4秒前
5秒前
yiren完成签到 ,获得积分10
5秒前
宇航完成签到,获得积分10
6秒前
7秒前
KIKI完成签到 ,获得积分10
9秒前
12345678完成签到,获得积分10
10秒前
ryeong发布了新的文献求助10
10秒前
HY完成签到 ,获得积分10
12秒前
15秒前
19秒前
Omni完成签到,获得积分10
20秒前
21秒前
小狸花发布了新的文献求助10
21秒前
zhuzhuxia完成签到,获得积分10
23秒前
ypres完成签到 ,获得积分10
24秒前
24秒前
烟花应助飘逸的谷菱采纳,获得10
24秒前
110完成签到 ,获得积分10
26秒前
27秒前
善良的一凤完成签到,获得积分10
28秒前
会厌完成签到 ,获得积分10
28秒前
黯然完成签到 ,获得积分10
30秒前
zhuzhuxia发布了新的文献求助10
30秒前
HEIKU应助ryeong采纳,获得10
32秒前
35秒前
35秒前
烟花应助时尚的小虾米采纳,获得10
36秒前
36秒前
科研通AI5应助ryeong采纳,获得10
38秒前
FSF完成签到,获得积分10
39秒前
timemaster666完成签到,获得积分10
40秒前
40秒前
ding应助LiugQin采纳,获得10
41秒前
xwxxoo发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773572
求助须知:如何正确求助?哪些是违规求助? 3319098
关于积分的说明 10193067
捐赠科研通 3033687
什么是DOI,文献DOI怎么找? 1664634
邀请新用户注册赠送积分活动 796263
科研通“疑难数据库(出版商)”最低求助积分说明 757390