Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review

医学 卵巢癌 人工智能 医学物理学 工作流程 肿瘤科 放射科 内科学 妇科 癌症 计算机科学 数据库
作者
F. Moro,Marianna Ciancia,Drieda Zaçe,Marica Vagni,Huong Elena Tran,Maria Teresa Giudice,Sofia Gambigliani Zoccoli,F. Mascilini,Francesca Ciccarone,Luca Boldrini,F. D’Antonio,Giovanni Scambia,A. C. Testa
出处
期刊:International Journal of Cancer [Wiley]
卷期号:155 (10): 1832-1845 被引量:2
标识
DOI:10.1002/ijc.35092
摘要

Abstract The aim of this paper was to explore the role of artificial intelligence (AI) applied to ultrasound imaging in gynecology oncology. Web of Science, PubMed, and Scopus databases were searched. All studies were imported to RAYYAN QCRI software. The overall quality of the included studies was assessed using QUADAS‐AI tool. Fifty studies were included, of these 37/50 (74.0%) on ovarian masses or ovarian cancer, 5/50 (10.0%) on endometrial cancer, 5/50 (10.0%) on cervical cancer, and 3/50 (6.0%) on other malignancies. Most studies were at high risk of bias for subject selection (i.e., sample size, source, or scanner model were not specified; data were not derived from open‐source datasets; imaging preprocessing was not performed) and index test (AI models was not externally validated) and at low risk of bias for reference standard (i.e., the reference standard correctly classified the target condition) and workflow (i.e., the time between index test and reference standard was reasonable). Most studies presented machine learning models (33/50, 66.0%) for the diagnosis and histopathological correlation of ovarian masses, while others focused on automatic segmentation, reproducibility of radiomics features, improvement of image quality, prediction of therapy resistance, progression‐free survival, and genetic mutation. The current evidence supports the role of AI as a complementary clinical and research tool in diagnosis, patient stratification, and prediction of histopathological correlation in gynecological malignancies. For example, the high performance of AI models to discriminate between benign and malignant ovarian masses or to predict their specific histology can improve the diagnostic accuracy of imaging methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芜湖完成签到 ,获得积分10
1秒前
1秒前
潘啊潘发布了新的文献求助10
3秒前
4秒前
冯道言发布了新的文献求助10
5秒前
MasterE完成签到,获得积分10
6秒前
shinysparrow应助Francis采纳,获得200
6秒前
7秒前
SciGPT应助夏晴采纳,获得20
7秒前
小文殊发布了新的文献求助10
8秒前
大个应助guygun采纳,获得10
9秒前
SCINEXUS完成签到,获得积分0
13秒前
小雯钱来完成签到,获得积分10
14秒前
潘啊潘完成签到,获得积分10
14秒前
8R60d8应助研友_8o5V2n采纳,获得10
15秒前
QQ完成签到 ,获得积分10
15秒前
17秒前
18秒前
劣根完成签到,获得积分10
18秒前
21秒前
22秒前
guygun发布了新的文献求助10
23秒前
吹筒仔发布了新的文献求助10
25秒前
26秒前
zh完成签到,获得积分10
27秒前
小蘑菇应助起床做核酸采纳,获得10
28秒前
yoyo20012623完成签到,获得积分10
29秒前
随便打完成签到,获得积分10
31秒前
七熵完成签到 ,获得积分10
33秒前
33秒前
Jerry发布了新的文献求助10
34秒前
Jessiez94发布了新的文献求助10
36秒前
CodeCraft应助冯道言采纳,获得10
36秒前
彭于晏应助guygun采纳,获得10
36秒前
37秒前
39秒前
40秒前
爆米花应助wang5945采纳,获得10
41秒前
良医完成签到 ,获得积分10
41秒前
淡淡天宇完成签到,获得积分10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289376
求助须知:如何正确求助?哪些是违规求助? 2926393
关于积分的说明 8426911
捐赠科研通 2597568
什么是DOI,文献DOI怎么找? 1417242
科研通“疑难数据库(出版商)”最低求助积分说明 659637
邀请新用户注册赠送积分活动 642117