Two-Level Scheduling Algorithms for Deep Neural Network Inference in Vehicular Networks

计算机科学 调度(生产过程) 能源消耗 推论 算法 火车 实时计算 人工智能 数学优化 工程类 数学 地图学 电气工程 地理
作者
Yalan Wu,Jigang Wu,Mianyang Yao,Bosheng Liu,Long Chen,Siew-Kei Lam
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9324-9343
标识
DOI:10.1109/tits.2023.3266795
摘要

In vehicular networks, task scheduling at the microarchitecture-level and network-level offers tremendous potential to improve the quality of computing services for deep neural network (DNN) inference. However, existing task scheduling works only focus on either one of the two levels, which results in inefficient utilization of computing resources. This paper aims to fill this gap by formulating a two-level scheduling problem for DNN inference tasks in a vehicular network, with an objective of minimizing total weighted sum of response time and energy consumption for all tasks under the following constraints: per task response time, per vehicle energy consumption, per vehicle storage capacity. We first formulate the problem and prove that it is NP-hard. A group transformation based algorithm, called GTA, is proposed. GTA makes scheduling decisions at the network-level using the group transformation based approach, and at the microarchitecture-level using a greedy strategy. In addition, an algorithm, denoted as DRL, is proposed to decrease total weighted sum of response time and energy consumption for all tasks. DRL trains two models with deep reinforcement learning to achieve two-level scheduling. The proposed algorithms are evaluated on a platform consisting of a desktop, Raspberry Pi, Eyeriss, OSM, SUMO, NS-3. Simulation results show that DRL outperforms the state-of-the-art methods for all cases, while the proposed GTA outperforms the state-of-the-art methods for most cases, in terms of total weighted sum of response time and energy consumption. Compared with four baseline algorithms, GTA and DRL reduce the total weighted sum of response time and energy consumption by 41.49% and 62.38%, on average respectively, for different numbers of tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盐盐完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
hh发布了新的文献求助10
3秒前
more应助jack采纳,获得30
4秒前
hehehe完成签到,获得积分10
4秒前
iuv完成签到,获得积分10
5秒前
6秒前
6秒前
个性的紫菜应助再见梧桐采纳,获得10
7秒前
iuv发布了新的文献求助10
7秒前
小不溜完成签到,获得积分10
9秒前
10秒前
科研通AI2S应助turbo采纳,获得10
10秒前
10秒前
12秒前
没风的季节完成签到,获得积分10
14秒前
14秒前
超级灰狼完成签到 ,获得积分10
16秒前
阿琳发布了新的文献求助10
16秒前
WHY驳回了华仔应助
16秒前
DY发布了新的文献求助10
17秒前
Umwandlung完成签到,获得积分10
18秒前
18秒前
清秀成威应助煮饭吃Zz采纳,获得10
19秒前
21秒前
22秒前
akamanuo完成签到,获得积分10
22秒前
23秒前
Yet.完成签到,获得积分10
23秒前
CodeCraft应助jy采纳,获得10
24秒前
华仔应助hh采纳,获得10
24秒前
pcr163应助wangfeng007采纳,获得200
26秒前
samosa发布了新的文献求助10
26秒前
Lucas应助人来人往采纳,获得10
27秒前
大模型应助阿琳采纳,获得10
27秒前
28秒前
苏航完成签到,获得积分20
28秒前
lize5493发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012