Two-Level Scheduling Algorithms for Deep Neural Network Inference in Vehicular Networks

计算机科学 调度(生产过程) 能源消耗 推论 算法 火车 实时计算 人工智能 数学优化 工程类 数学 地图学 电气工程 地理
作者
Yalan Wu,Jigang Wu,Mianyang Yao,Bosheng Liu,Long Chen,Siew-Kei Lam
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9324-9343
标识
DOI:10.1109/tits.2023.3266795
摘要

In vehicular networks, task scheduling at the microarchitecture-level and network-level offers tremendous potential to improve the quality of computing services for deep neural network (DNN) inference. However, existing task scheduling works only focus on either one of the two levels, which results in inefficient utilization of computing resources. This paper aims to fill this gap by formulating a two-level scheduling problem for DNN inference tasks in a vehicular network, with an objective of minimizing total weighted sum of response time and energy consumption for all tasks under the following constraints: per task response time, per vehicle energy consumption, per vehicle storage capacity. We first formulate the problem and prove that it is NP-hard. A group transformation based algorithm, called GTA, is proposed. GTA makes scheduling decisions at the network-level using the group transformation based approach, and at the microarchitecture-level using a greedy strategy. In addition, an algorithm, denoted as DRL, is proposed to decrease total weighted sum of response time and energy consumption for all tasks. DRL trains two models with deep reinforcement learning to achieve two-level scheduling. The proposed algorithms are evaluated on a platform consisting of a desktop, Raspberry Pi, Eyeriss, OSM, SUMO, NS-3. Simulation results show that DRL outperforms the state-of-the-art methods for all cases, while the proposed GTA outperforms the state-of-the-art methods for most cases, in terms of total weighted sum of response time and energy consumption. Compared with four baseline algorithms, GTA and DRL reduce the total weighted sum of response time and energy consumption by 41.49% and 62.38%, on average respectively, for different numbers of tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxiaobei给wuxiaobei的求助进行了留言
1秒前
wanci应助qweasdzxcqwe采纳,获得10
1秒前
3秒前
寒冷的天亦完成签到,获得积分10
3秒前
一昂杨完成签到,获得积分10
3秒前
3秒前
是容与呀完成签到,获得积分10
4秒前
4秒前
YY发布了新的文献求助10
4秒前
Hong发布了新的文献求助10
5秒前
冰淇淋啦啦啦完成签到,获得积分20
5秒前
科研通AI2S应助Mansis采纳,获得10
5秒前
kang发布了新的文献求助10
5秒前
xy发布了新的文献求助10
5秒前
健忘绿茶发布了新的文献求助10
6秒前
感动的世平完成签到,获得积分10
6秒前
科研通AI2S应助冷傲博采纳,获得10
6秒前
6秒前
柚子完成签到,获得积分10
7秒前
星辰大海应助白青采纳,获得10
7秒前
JangYW完成签到,获得积分10
7秒前
回家放羊完成签到 ,获得积分10
7秒前
JoshuaChen发布了新的文献求助20
7秒前
tianhualefei完成签到,获得积分10
8秒前
可爱的香菇完成签到 ,获得积分10
8秒前
8秒前
毛子涵完成签到,获得积分10
8秒前
墨旱莲完成签到,获得积分10
8秒前
zzzqqq完成签到,获得积分10
8秒前
9秒前
懦弱的难敌完成签到,获得积分10
9秒前
布鲁斯盖完成签到,获得积分10
9秒前
SILENCE发布了新的文献求助10
9秒前
科研通AI2S应助Du采纳,获得10
9秒前
10秒前
10秒前
10秒前
我是老大应助李霞采纳,获得10
10秒前
277发布了新的文献求助20
10秒前
sherlym发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582