亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two-Level Scheduling Algorithms for Deep Neural Network Inference in Vehicular Networks

计算机科学 调度(生产过程) 能源消耗 推论 算法 火车 实时计算 人工智能 数学优化 工程类 数学 地图学 电气工程 地理
作者
Yalan Wu,Jigang Wu,Mianyang Yao,Bosheng Liu,Long Chen,Siew-Kei Lam
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 9324-9343 被引量:6
标识
DOI:10.1109/tits.2023.3266795
摘要

In vehicular networks, task scheduling at the microarchitecture-level and network-level offers tremendous potential to improve the quality of computing services for deep neural network (DNN) inference. However, existing task scheduling works only focus on either one of the two levels, which results in inefficient utilization of computing resources. This paper aims to fill this gap by formulating a two-level scheduling problem for DNN inference tasks in a vehicular network, with an objective of minimizing total weighted sum of response time and energy consumption for all tasks under the following constraints: per task response time, per vehicle energy consumption, per vehicle storage capacity. We first formulate the problem and prove that it is NP-hard. A group transformation based algorithm, called GTA, is proposed. GTA makes scheduling decisions at the network-level using the group transformation based approach, and at the microarchitecture-level using a greedy strategy. In addition, an algorithm, denoted as DRL, is proposed to decrease total weighted sum of response time and energy consumption for all tasks. DRL trains two models with deep reinforcement learning to achieve two-level scheduling. The proposed algorithms are evaluated on a platform consisting of a desktop, Raspberry Pi, Eyeriss, OSM, SUMO, NS-3. Simulation results show that DRL outperforms the state-of-the-art methods for all cases, while the proposed GTA outperforms the state-of-the-art methods for most cases, in terms of total weighted sum of response time and energy consumption. Compared with four baseline algorithms, GTA and DRL reduce the total weighted sum of response time and energy consumption by 41.49% and 62.38%, on average respectively, for different numbers of tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单白风完成签到 ,获得积分10
27秒前
52秒前
orange完成签到,获得积分10
57秒前
57秒前
落叶捎来讯息完成签到 ,获得积分10
59秒前
Wei发布了新的文献求助50
1分钟前
言辞完成签到,获得积分10
1分钟前
gf完成签到 ,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
huichuanyin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李婉婷完成签到 ,获得积分10
1分钟前
opp发布了新的文献求助10
1分钟前
1分钟前
hlq完成签到 ,获得积分10
1分钟前
Xjx6519发布了新的文献求助10
1分钟前
nannan完成签到 ,获得积分10
1分钟前
xxl完成签到 ,获得积分10
2分钟前
科研通AI6应助Xjx6519采纳,获得10
2分钟前
2分钟前
萧西完成签到 ,获得积分10
2分钟前
哇哇哇完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Yara发布了新的文献求助10
2分钟前
我爱科研完成签到,获得积分10
2分钟前
bajiu完成签到 ,获得积分10
2分钟前
拥抱完成签到 ,获得积分10
2分钟前
3分钟前
yongtt发布了新的文献求助10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558432
求助须知:如何正确求助?哪些是违规求助? 4643465
关于积分的说明 14671026
捐赠科研通 4584781
什么是DOI,文献DOI怎么找? 2515164
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459808