Research on adaptive state prediction method for the metering error of capacitor voltage transformer

测光模式 计算机科学 变压器 残余物 观测误差 控制理论(社会学) 电压 电容器 工程类 算法 数学 统计 电气工程 人工智能 机械工程 控制(管理)
作者
Zhu Zhang,Li Binbin,Jie Xue,Lijian Ding
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (8)
标识
DOI:10.1063/5.0162472
摘要

A capacitor voltage transformer (CVT) is widely used in high voltage power systems because of its good insulation performance. However, the structure of CVT is more complex and the stability of its metering error is poor, which easily causes the loss of power metering. The conventional evaluation method for the metering error of CVT is to compare and calibrate with a standard transformer under off-line condition in a fixed period. Because of the long evaluation period, it is impossible to accurately predict the state change of CVT metering error, which is of more significance practically. To solve this problem, this paper proposes an adaptive state prediction method: Analyze the measurement data of CVT using principal component analysis method under the constraint of electrical physical relationship, the metering of CVT is mapped to residual and score (CRS) statistic. For this way, the self-evaluation of CVT metering error in real-time is realized without a standard transformer to get the high frequency time series of error data. According to the measurement data of CVT in process, the CRS statistics are batch processed adaptively, and the prediction model of CRS statistics is established based on the time series analysis. Experiments show that the method can accurately predict the state change of CVT metering error, and the prediction error is better than 15%. It is helpful to promote the development of CVT metering error detection into on-demand detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坦率的妙柏给坦率的妙柏的求助进行了留言
1秒前
wanci应助娃哈哈采纳,获得10
1秒前
hhh发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
科研圣体关注了科研通微信公众号
6秒前
魔幻的又亦完成签到,获得积分20
6秒前
Owen应助li采纳,获得10
7秒前
7秒前
小谢同学发布了新的文献求助10
7秒前
LZH完成签到 ,获得积分10
8秒前
8秒前
hanhan发布了新的文献求助10
8秒前
yy发布了新的文献求助10
8秒前
9秒前
美丽松鼠发布了新的文献求助10
10秒前
汉堡包应助xusuizi采纳,获得10
11秒前
11秒前
12秒前
13秒前
13秒前
赘婿应助研友_Lpa2On采纳,获得10
13秒前
吃惊橘子应助小唐采纳,获得10
13秒前
13秒前
干破天发布了新的文献求助10
13秒前
领导范儿应助唉呀采纳,获得10
14秒前
Lucas应助sumliet采纳,获得10
15秒前
Smith.w应助勤劳钧采纳,获得10
15秒前
科研通AI2S应助苏卿采纳,获得10
15秒前
朴实初兰发布了新的文献求助10
15秒前
清脆的土豆应助大大王采纳,获得10
15秒前
文静季节发布了新的文献求助10
16秒前
Owen应助坚强的严青采纳,获得10
16秒前
天天快乐应助迷人灵采纳,获得10
18秒前
20秒前
文静季节完成签到,获得积分10
21秒前
21秒前
0029发布了新的文献求助10
22秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 500
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233820
求助须知:如何正确求助?哪些是违规求助? 2880284
关于积分的说明 8214616
捐赠科研通 2547734
什么是DOI,文献DOI怎么找? 1377175
科研通“疑难数据库(出版商)”最低求助积分说明 647789
邀请新用户注册赠送积分活动 623197