已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing Well Trajectory Navigation and Advanced Geo-Steering Using Deep-Reinforcement Learning

强化学习 弹道 钻探 随钻测量 导线 计算机科学 平面图(考古学) 演习 过程(计算) 模拟 人工智能 工程类 机械工程 地质学 古生物学 物理 大地测量学 天文 操作系统
作者
Narendra Vishnumolakala,Vivek Kesireddy,Sheelabhadra Dey,Eduardo Gildin,Enrique Z. Losoya
标识
DOI:10.2118/215011-ms
摘要

Abstract The efficiency of modern drilling operations depends on the planning phase to determine possible well trajectories and the ability of the directional driller to traverse them accurately. Deviations from the planned trajectory while drilling often require updates to the original well plan, involving drilling engineers and rig personnel, which can be time-consuming due to several uncertainties, such as formation tendencies, survey measurement inaccuracy, or estimation errors. To address these challenges, this paper proposes an innovative solution that leverages artificial intelligence (AI) methods, specifically deep reinforcement learning (DRL) to dramatically reduce the need for continuous corrections to the well plan while drilling. In the DRL paradigm, the proposed approach eliminates the need for constant plan adjustments by training a drilling agent to imitate the driller's ability to dynamically adjust the well trajectory in real time based on information from previous drilling logs, well plans, and near-the-bit measurements. This research utilizes a physics-based simulation engine to model a directional drilling environment as a Markov Decision Process (MDP). The MDP is intended for an autonomous system based on geological data models and real-time measurements obtained while drilling (MWD) to train deep reinforcement learning (DRL) agents to drill directional wellbores that maintain maximum contact with the target formation. The simulator incorporates uncertainties of the real-world drilling environment, such as bit walk, formation properties, and drilling speed which, combined, help derive the actions performed by the drilling agent. Our findings reveal that using the proposed methodology in a virtual drilling environment, the drilling agent effectively navigates well paths in the presence of uncertainties and successfully tackle challenges such as avoiding excessive tortuosity and doglegs while maximizing contact with the target formation. Furthermore, the use of domain randomization during training enabled the RL agents to exhibit exceptional generalizability to a wide range of drilling scenarios through the random selection of drilling test sites from a set of unseen sites during training — demonstrating the ability of the agent to adapt and reach the target formation even when the initial well-plan is inaccurate — resulting in a 90% success rate. This self-correcting approach demonstrates the potential for automated, proactive, self-contained steering operations with minimal human involvement. The developed simulation framework is a pioneering approach to enhancing real-time adjustments of drilling well paths using reinforcement learning and optimizing drilling operations. It is the first-of-its-kind method to augment drillers’ ability to navigate through drilling uncertainties and maximize pay zone contact and pave the way for the creation of robust, scalable, and practical autonomous drilling systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mpenny77完成签到,获得积分10
1秒前
1秒前
Echo完成签到,获得积分10
2秒前
冰冰发布了新的文献求助10
4秒前
5秒前
469024195完成签到 ,获得积分10
6秒前
失眠的霸发布了新的文献求助30
7秒前
米妮发布了新的文献求助30
7秒前
飞翔完成签到 ,获得积分10
7秒前
asaki完成签到,获得积分10
8秒前
薄荷小姐完成签到 ,获得积分10
8秒前
ZCLLLLL完成签到,获得积分10
10秒前
科研通AI2S应助风的忧伤采纳,获得10
10秒前
福同学完成签到,获得积分10
12秒前
13秒前
nove999完成签到 ,获得积分10
13秒前
17秒前
19秒前
华仔应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
Dobby发布了新的文献求助30
20秒前
不想科研的不是好牛马完成签到 ,获得积分10
21秒前
22秒前
捉住一只羊完成签到 ,获得积分10
22秒前
nano完成签到 ,获得积分10
24秒前
风的忧伤发布了新的文献求助10
25秒前
学习学习再学习完成签到 ,获得积分10
27秒前
27秒前
ZCLLLLL发布了新的文献求助10
27秒前
kannnliannn完成签到 ,获得积分10
28秒前
111完成签到 ,获得积分10
29秒前
楠茸完成签到 ,获得积分10
30秒前
30秒前
豆腐干地方完成签到,获得积分10
31秒前
hahaha完成签到 ,获得积分10
32秒前
王唯任完成签到,获得积分10
32秒前
风的忧伤完成签到,获得积分10
33秒前
标致的电灯胆完成签到,获得积分10
37秒前
泠风来完成签到,获得积分10
38秒前
leopardymk发布了新的文献求助10
39秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085205
求助须知:如何正确求助?哪些是违规求助? 2738111
关于积分的说明 7548402
捐赠科研通 2387728
什么是DOI,文献DOI怎么找? 1266084
科研通“疑难数据库(出版商)”最低求助积分说明 613281
版权声明 598492