亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Well Trajectory Navigation and Advanced Geo-Steering Using Deep-Reinforcement Learning

强化学习 弹道 钻探 随钻测量 导线 计算机科学 平面图(考古学) 演习 过程(计算) 模拟 人工智能 工程类 机械工程 地质学 古生物学 物理 大地测量学 天文 操作系统
作者
Narendra Vishnumolakala,Vivek Kesireddy,Sheelabhadra Dey,Eduardo Gildin,Enrique Z. Losoya
标识
DOI:10.2118/215011-ms
摘要

Abstract The efficiency of modern drilling operations depends on the planning phase to determine possible well trajectories and the ability of the directional driller to traverse them accurately. Deviations from the planned trajectory while drilling often require updates to the original well plan, involving drilling engineers and rig personnel, which can be time-consuming due to several uncertainties, such as formation tendencies, survey measurement inaccuracy, or estimation errors. To address these challenges, this paper proposes an innovative solution that leverages artificial intelligence (AI) methods, specifically deep reinforcement learning (DRL) to dramatically reduce the need for continuous corrections to the well plan while drilling. In the DRL paradigm, the proposed approach eliminates the need for constant plan adjustments by training a drilling agent to imitate the driller's ability to dynamically adjust the well trajectory in real time based on information from previous drilling logs, well plans, and near-the-bit measurements. This research utilizes a physics-based simulation engine to model a directional drilling environment as a Markov Decision Process (MDP). The MDP is intended for an autonomous system based on geological data models and real-time measurements obtained while drilling (MWD) to train deep reinforcement learning (DRL) agents to drill directional wellbores that maintain maximum contact with the target formation. The simulator incorporates uncertainties of the real-world drilling environment, such as bit walk, formation properties, and drilling speed which, combined, help derive the actions performed by the drilling agent. Our findings reveal that using the proposed methodology in a virtual drilling environment, the drilling agent effectively navigates well paths in the presence of uncertainties and successfully tackle challenges such as avoiding excessive tortuosity and doglegs while maximizing contact with the target formation. Furthermore, the use of domain randomization during training enabled the RL agents to exhibit exceptional generalizability to a wide range of drilling scenarios through the random selection of drilling test sites from a set of unseen sites during training — demonstrating the ability of the agent to adapt and reach the target formation even when the initial well-plan is inaccurate — resulting in a 90% success rate. This self-correcting approach demonstrates the potential for automated, proactive, self-contained steering operations with minimal human involvement. The developed simulation framework is a pioneering approach to enhancing real-time adjustments of drilling well paths using reinforcement learning and optimizing drilling operations. It is the first-of-its-kind method to augment drillers’ ability to navigate through drilling uncertainties and maximize pay zone contact and pave the way for the creation of robust, scalable, and practical autonomous drilling systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助黎子酱采纳,获得10
13秒前
万邦德完成签到,获得积分10
16秒前
Emma完成签到 ,获得积分10
17秒前
43秒前
43秒前
gexzygg应助科研通管家采纳,获得10
45秒前
shhoing应助科研通管家采纳,获得10
45秒前
gexzygg应助科研通管家采纳,获得30
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
gexzygg应助科研通管家采纳,获得10
45秒前
gexzygg应助科研通管家采纳,获得10
46秒前
长易发布了新的文献求助10
48秒前
在水一方应助长易采纳,获得10
1分钟前
1分钟前
烟花应助科研通管家采纳,获得30
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
Yolanda_Xu完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
nxy完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
保尔china完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
整齐的不评完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
5分钟前
边雨完成签到 ,获得积分10
5分钟前
大胆中恶发布了新的文献求助10
5分钟前
5分钟前
jianrobsim完成签到,获得积分10
5分钟前
11发布了新的文献求助10
6分钟前
Zcl完成签到 ,获得积分10
6分钟前
gexzygg应助jianrobsim采纳,获得10
6分钟前
11完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549244
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634874
捐赠科研通 4576033
什么是DOI,文献DOI怎么找? 2509460
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456501