Optimizing Well Trajectory Navigation and Advanced Geo-Steering Using Deep-Reinforcement Learning

强化学习 弹道 钻探 随钻测量 导线 计算机科学 平面图(考古学) 演习 过程(计算) 模拟 人工智能 工程类 机械工程 地质学 天文 操作系统 物理 古生物学 大地测量学
作者
Narendra Vishnumolakala,Vivek Kesireddy,Sheelabhadra Dey,Eduardo Gildin,Enrique Z. Losoya
标识
DOI:10.2118/215011-ms
摘要

Abstract The efficiency of modern drilling operations depends on the planning phase to determine possible well trajectories and the ability of the directional driller to traverse them accurately. Deviations from the planned trajectory while drilling often require updates to the original well plan, involving drilling engineers and rig personnel, which can be time-consuming due to several uncertainties, such as formation tendencies, survey measurement inaccuracy, or estimation errors. To address these challenges, this paper proposes an innovative solution that leverages artificial intelligence (AI) methods, specifically deep reinforcement learning (DRL) to dramatically reduce the need for continuous corrections to the well plan while drilling. In the DRL paradigm, the proposed approach eliminates the need for constant plan adjustments by training a drilling agent to imitate the driller's ability to dynamically adjust the well trajectory in real time based on information from previous drilling logs, well plans, and near-the-bit measurements. This research utilizes a physics-based simulation engine to model a directional drilling environment as a Markov Decision Process (MDP). The MDP is intended for an autonomous system based on geological data models and real-time measurements obtained while drilling (MWD) to train deep reinforcement learning (DRL) agents to drill directional wellbores that maintain maximum contact with the target formation. The simulator incorporates uncertainties of the real-world drilling environment, such as bit walk, formation properties, and drilling speed which, combined, help derive the actions performed by the drilling agent. Our findings reveal that using the proposed methodology in a virtual drilling environment, the drilling agent effectively navigates well paths in the presence of uncertainties and successfully tackle challenges such as avoiding excessive tortuosity and doglegs while maximizing contact with the target formation. Furthermore, the use of domain randomization during training enabled the RL agents to exhibit exceptional generalizability to a wide range of drilling scenarios through the random selection of drilling test sites from a set of unseen sites during training — demonstrating the ability of the agent to adapt and reach the target formation even when the initial well-plan is inaccurate — resulting in a 90% success rate. This self-correcting approach demonstrates the potential for automated, proactive, self-contained steering operations with minimal human involvement. The developed simulation framework is a pioneering approach to enhancing real-time adjustments of drilling well paths using reinforcement learning and optimizing drilling operations. It is the first-of-its-kind method to augment drillers’ ability to navigate through drilling uncertainties and maximize pay zone contact and pave the way for the creation of robust, scalable, and practical autonomous drilling systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米饭完成签到 ,获得积分10
刚刚
2秒前
lj-TJUT完成签到,获得积分10
4秒前
4秒前
fancy完成签到 ,获得积分10
5秒前
Lu完成签到 ,获得积分10
5秒前
邱邱发布了新的文献求助10
7秒前
默默诗筠完成签到,获得积分10
7秒前
贪玩的访风完成签到 ,获得积分10
8秒前
12秒前
哎呦呦呦发布了新的文献求助10
13秒前
十七完成签到 ,获得积分10
15秒前
orixero应助shinn采纳,获得50
16秒前
SYLH应助qsxy采纳,获得10
18秒前
尽如发布了新的文献求助70
18秒前
20秒前
李健的粉丝团团长应助qiu采纳,获得10
21秒前
21秒前
lj-TJUT发布了新的文献求助10
24秒前
搜集达人应助查丽采纳,获得10
26秒前
wangbq发布了新的文献求助200
27秒前
DrKe完成签到,获得积分10
29秒前
29秒前
JamesPei应助lj-TJUT采纳,获得10
31秒前
Jasper应助邱邱采纳,获得10
33秒前
小橙子完成签到,获得积分10
35秒前
GGBAO发布了新的文献求助10
35秒前
qsxy完成签到,获得积分10
37秒前
38秒前
40秒前
烟花应助活泼稀采纳,获得10
40秒前
隐形曼青应助胡洁媛采纳,获得10
40秒前
Lucas应助任全强采纳,获得10
41秒前
半分甜发布了新的文献求助30
42秒前
43秒前
HLQF完成签到,获得积分10
44秒前
所所应助DirectorO采纳,获得30
45秒前
迷人的天抒应助内向雅香采纳,获得10
45秒前
查丽发布了新的文献求助10
47秒前
Lv发布了新的文献求助10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602