Unsupervised Domain Adaptive Dose Prediction via Cross-Attention Transformer and Target-Specific Knowledge Preservation

计算机科学 人工智能 判别式 编码器 深度学习 卷积神经网络 学习迁移 机器学习 域适应 变压器 标记数据 人工神经网络 模式识别(心理学) 分类器(UML) 操作系统 物理 量子力学 电压
作者
Jiaqi Cui,Jianghong Xiao,Yun Hou,Wu Xi,Jiliu Zhou,Xingchen Peng,Yan Wang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11) 被引量:6
标识
DOI:10.1142/s0129065723500570
摘要

Radiotherapy is one of the leading treatments for cancer. To accelerate the implementation of radiotherapy in clinic, various deep learning-based methods have been developed for automatic dose prediction. However, the effectiveness of these methods heavily relies on the availability of a substantial amount of data with labels, i.e. the dose distribution maps, which cost dosimetrists considerable time and effort to acquire. For cancers of low-incidence, such as cervical cancer, it is often a luxury to collect an adequate amount of labeled data to train a well-performing deep learning (DL) model. To mitigate this problem, in this paper, we resort to the unsupervised domain adaptation (UDA) strategy to achieve accurate dose prediction for cervical cancer (target domain) by leveraging the well-labeled high-incidence rectal cancer (source domain). Specifically, we introduce the cross-attention mechanism to learn the domain-invariant features and develop a cross-attention transformer-based encoder to align the two different cancer domains. Meanwhile, to preserve the target-specific knowledge, we employ multiple domain classifiers to enforce the network to extract more discriminative target features. In addition, we employ two independent convolutional neural network (CNN) decoders to compensate for the lack of spatial inductive bias in the pure transformer and generate accurate dose maps for both domains. Furthermore, to enhance the performance, two additional losses, i.e. a knowledge distillation loss (KDL) and a domain classification loss (DCL), are incorporated to transfer the domain-invariant features while preserving domain-specific information. Experimental results on a rectal cancer dataset and a cervical cancer dataset have demonstrated that our method achieves the best quantitative results with [Formula: see text], [Formula: see text], and HI of 1.446, 1.231, and 0.082, respectively, and outperforms other methods in terms of qualitative assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingyu完成签到,获得积分20
刚刚
翟淑雨完成签到,获得积分10
1秒前
IV完成签到,获得积分10
1秒前
fyukgfdyifotrf完成签到,获得积分10
2秒前
2秒前
小橙完成签到 ,获得积分10
3秒前
CodeCraft应助LucyLi采纳,获得10
3秒前
111231完成签到,获得积分10
3秒前
小木林发布了新的文献求助10
4秒前
kle完成签到,获得积分10
4秒前
4秒前
宓人英完成签到,获得积分10
4秒前
4秒前
5秒前
wyx完成签到,获得积分10
6秒前
炙热沛白发布了新的文献求助10
6秒前
orixero应助一二采纳,获得10
7秒前
busuan发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
11秒前
jingyu发布了新的文献求助10
12秒前
QH_Y完成签到,获得积分10
13秒前
研友_n2r2Kn完成签到,获得积分10
13秒前
Orange应助月流瓦采纳,获得10
13秒前
13秒前
太叔若南完成签到 ,获得积分10
15秒前
17秒前
Ava应助伶俐的如容采纳,获得20
17秒前
17秒前
17秒前
学林书屋发布了新的文献求助30
18秒前
tartyang发布了新的文献求助10
18秒前
烟花应助灯箱采纳,获得10
19秒前
pan发布了新的文献求助10
20秒前
皮皮蛙发布了新的文献求助10
21秒前
dfghjkl发布了新的文献求助10
22秒前
22秒前
22秒前
大力惜海发布了新的文献求助10
23秒前
无事小神仙完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602595
求助须知:如何正确求助?哪些是违规求助? 4687667
关于积分的说明 14850700
捐赠科研通 4684658
什么是DOI,文献DOI怎么找? 2539964
邀请新用户注册赠送积分活动 1506717
关于科研通互助平台的介绍 1471428