Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

计算机科学 嵌入 联营 图形 节点(物理) 理论计算机科学 人工智能 异构网络 扩展(谓词逻辑) 机器学习 分布式计算 电信 无线网络 结构工程 工程类 无线 程序设计语言
作者
Sannyuya Liu,Shengyingjie Liu,Juan Yang,Jianwen Sun,Xiaoxuan Shen,Qing Li,Rui Zou,Shangheng Du
出处
期刊:ACM Transactions on Information Systems 卷期号:42 (2): 1-28
标识
DOI:10.1145/3617828
摘要

Graph embedding (GE) aims to acquire low-dimensional node representations while maintaining the graph’s structural and semantic attributes. Intelligent tutoring systems (ITS) signify a noteworthy achievement in the fusion of AI and education. Utilizing GE to model ITS can elevate their performance in predictive and annotation tasks. Current GE techniques, whether applied to heterogeneous or dynamic graphs, struggle to efficiently model ITS data. The GEs within ITS should retain their semidynamic, independent, and smooth characteristics. This article introduces a heterogeneous evolution network (HEN) for illustrating entities and relations within an ITS. Additionally, we introduce a temporal extension graph neural network (TEGNN) to model both evolving and static nodes within the HEN. In the TEGNN framework, dynamic nodes are initially improved over time through temporal extension (TE), providing an accurate depiction of each learner’s implicit state at each time step. Subsequently, we propose a stochastic temporal pooling (STP) strategy to estimate the embedding sets of all evolving nodes. This effectively enhances model efficiency and usability. Following this, a heterogeneous aggregation network is devised to proficiently extract heterogeneous features from the HEN. This network employs both node-level and relation-level attention mechanisms to craft aggregated node features. To emphasize the superiority of TEGNN, we perform experiments on several real ITS datasets and show that our method significantly outperforms the state-of-the-art approaches. The experiments validate that TE serves as an efficient framework for modeling temporal information in GE, and STP not only accelerates the training process but also enhances the resultant accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助lzc采纳,获得10
1秒前
日出发布了新的文献求助10
2秒前
积极慕梅应助guardcurry采纳,获得20
3秒前
充电宝应助飞飞鱼采纳,获得10
4秒前
orixero应助风中忆枫采纳,获得10
4秒前
小小完成签到,获得积分20
5秒前
搜集达人应助日出采纳,获得10
7秒前
斯人完成签到 ,获得积分10
7秒前
啦啦啦哟完成签到,获得积分10
7秒前
尚寻完成签到,获得积分10
8秒前
Andrew完成签到,获得积分10
8秒前
9秒前
思源应助shain采纳,获得10
10秒前
11秒前
precious完成签到 ,获得积分10
12秒前
fdxs发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
Jocelyn完成签到,获得积分10
14秒前
Jasper应助飞飞鱼采纳,获得10
14秒前
15秒前
aaronzhu1995发布了新的文献求助10
16秒前
haowu发布了新的文献求助10
17秒前
17秒前
APS完成签到,获得积分10
17秒前
风中忆枫发布了新的文献求助10
19秒前
ZSmile给ZSmile的求助进行了留言
20秒前
希望天下0贩的0应助jou采纳,获得10
20秒前
旷野天发布了新的文献求助10
21秒前
22秒前
无影随行完成签到,获得积分10
22秒前
小c完成签到 ,获得积分10
23秒前
23秒前
香蕉觅云应助鲤鱼青雪采纳,获得10
23秒前
奋斗枫完成签到,获得积分10
24秒前
26秒前
田田完成签到 ,获得积分10
27秒前
27秒前
汉堡包应助文文文采纳,获得10
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919