Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

计算机科学 嵌入 联营 图形 节点(物理) 理论计算机科学 人工智能 异构网络 扩展(谓词逻辑) 机器学习 分布式计算 电信 无线网络 结构工程 工程类 无线 程序设计语言
作者
Sannyuya Liu,Shengyingjie Liu,Zongkai Yang,Jianwen Sun,Xiaoxuan Shen,Qing Li,Rui Zou,Shangheng Du
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-28 被引量:3
标识
DOI:10.1145/3617828
摘要

Graph embedding (GE) aims to acquire low-dimensional node representations while maintaining the graph’s structural and semantic attributes. Intelligent tutoring systems (ITS) signify a noteworthy achievement in the fusion of AI and education. Utilizing GE to model ITS can elevate their performance in predictive and annotation tasks. Current GE techniques, whether applied to heterogeneous or dynamic graphs, struggle to efficiently model ITS data. The GEs within ITS should retain their semidynamic, independent, and smooth characteristics. This article introduces a heterogeneous evolution network (HEN) for illustrating entities and relations within an ITS. Additionally, we introduce a temporal extension graph neural network (TEGNN) to model both evolving and static nodes within the HEN. In the TEGNN framework, dynamic nodes are initially improved over time through temporal extension (TE), providing an accurate depiction of each learner’s implicit state at each time step. Subsequently, we propose a stochastic temporal pooling (STP) strategy to estimate the embedding sets of all evolving nodes. This effectively enhances model efficiency and usability. Following this, a heterogeneous aggregation network is devised to proficiently extract heterogeneous features from the HEN. This network employs both node-level and relation-level attention mechanisms to craft aggregated node features. To emphasize the superiority of TEGNN, we perform experiments on several real ITS datasets and show that our method significantly outperforms the state-of-the-art approaches. The experiments validate that TE serves as an efficient framework for modeling temporal information in GE, and STP not only accelerates the training process but also enhances the resultant accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kitty完成签到,获得积分10
刚刚
wu完成签到,获得积分10
刚刚
1351567822应助xueshu采纳,获得50
刚刚
刚刚
Jasper应助xmy采纳,获得10
刚刚
LLL完成签到,获得积分10
1秒前
荣荣发布了新的文献求助10
1秒前
1秒前
Jasper应助LXF采纳,获得10
1秒前
1秒前
脑洞疼应助奥润之采纳,获得10
2秒前
yourenpkma123完成签到,获得积分10
2秒前
2秒前
科目三应助zjr@keyantong采纳,获得10
2秒前
555发布了新的文献求助10
2秒前
聪明帅哥发布了新的文献求助10
3秒前
3秒前
YIQING发布了新的文献求助30
3秒前
喵喵发布了新的文献求助10
4秒前
欢乐谷完成签到,获得积分10
4秒前
火星上的摩托完成签到,获得积分10
4秒前
orixero应助dumplong采纳,获得10
5秒前
www发布了新的文献求助10
6秒前
小羊耶啵发布了新的文献求助20
6秒前
王jh完成签到 ,获得积分10
6秒前
香蕉觅云应助马成双采纳,获得10
6秒前
陈先生de猫完成签到,获得积分20
6秒前
sc完成签到,获得积分10
6秒前
顾矜应助搔扒采纳,获得10
6秒前
3093284979完成签到,获得积分10
6秒前
完美世界应助H星科23456采纳,获得10
6秒前
7秒前
7秒前
SciGPT应助gaochanglu采纳,获得10
9秒前
9秒前
9秒前
10秒前
kljlk发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
小铭同学关注了科研通微信公众号
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721