Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

计算机科学 嵌入 联营 图形 节点(物理) 理论计算机科学 人工智能 异构网络 扩展(谓词逻辑) 机器学习 分布式计算 工程类 无线网络 电信 程序设计语言 无线 结构工程
作者
Sannyuya Liu,Shengyingjie Liu,Zongkai Yang,Jianwen Sun,Xiaoxuan Shen,Qing Li,Rui Zou,Shangheng Du
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-28 被引量:3
标识
DOI:10.1145/3617828
摘要

Graph embedding (GE) aims to acquire low-dimensional node representations while maintaining the graph’s structural and semantic attributes. Intelligent tutoring systems (ITS) signify a noteworthy achievement in the fusion of AI and education. Utilizing GE to model ITS can elevate their performance in predictive and annotation tasks. Current GE techniques, whether applied to heterogeneous or dynamic graphs, struggle to efficiently model ITS data. The GEs within ITS should retain their semidynamic, independent, and smooth characteristics. This article introduces a heterogeneous evolution network (HEN) for illustrating entities and relations within an ITS. Additionally, we introduce a temporal extension graph neural network (TEGNN) to model both evolving and static nodes within the HEN. In the TEGNN framework, dynamic nodes are initially improved over time through temporal extension (TE), providing an accurate depiction of each learner’s implicit state at each time step. Subsequently, we propose a stochastic temporal pooling (STP) strategy to estimate the embedding sets of all evolving nodes. This effectively enhances model efficiency and usability. Following this, a heterogeneous aggregation network is devised to proficiently extract heterogeneous features from the HEN. This network employs both node-level and relation-level attention mechanisms to craft aggregated node features. To emphasize the superiority of TEGNN, we perform experiments on several real ITS datasets and show that our method significantly outperforms the state-of-the-art approaches. The experiments validate that TE serves as an efficient framework for modeling temporal information in GE, and STP not only accelerates the training process but also enhances the resultant accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐灵阳完成签到,获得积分10
2秒前
充电宝应助机智的含蕾采纳,获得30
4秒前
lewis17发布了新的文献求助30
4秒前
5秒前
老神在在完成签到,获得积分10
6秒前
adi完成签到,获得积分10
8秒前
阳光he完成签到,获得积分10
8秒前
9秒前
0814d完成签到,获得积分10
9秒前
9秒前
233完成签到,获得积分10
10秒前
徐州檀完成签到,获得积分10
10秒前
11秒前
田様应助orang采纳,获得10
11秒前
12秒前
jagger完成签到,获得积分10
12秒前
12秒前
13秒前
天天快乐应助lewis17采纳,获得10
13秒前
R_完成签到 ,获得积分10
14秒前
淡然平蓝完成签到 ,获得积分10
14秒前
Lucille发布了新的文献求助10
15秒前
16秒前
666发布了新的文献求助50
16秒前
黄毅完成签到,获得积分10
16秒前
17秒前
18秒前
我不完成签到,获得积分10
18秒前
单雅慧发布了新的文献求助10
18秒前
一个冷漠无情的人完成签到,获得积分10
18秒前
007发布了新的文献求助10
19秒前
加贝完成签到 ,获得积分10
20秒前
李健的小迷弟应助李可汗采纳,获得10
21秒前
一二三发布了新的文献求助10
21秒前
杨哈哈完成签到,获得积分10
22秒前
晚风完成签到,获得积分10
23秒前
25秒前
26秒前
yuliuism完成签到,获得积分10
26秒前
恬恬完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673