已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

计算机科学 嵌入 联营 图形 节点(物理) 理论计算机科学 人工智能 异构网络 扩展(谓词逻辑) 机器学习 分布式计算 工程类 无线网络 电信 程序设计语言 无线 结构工程
作者
Sannyuya Liu,Shengyingjie Liu,Zongkai Yang,Jianwen Sun,Xiaoxuan Shen,Qing Li,Rui Zou,Shangheng Du
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-28 被引量:3
标识
DOI:10.1145/3617828
摘要

Graph embedding (GE) aims to acquire low-dimensional node representations while maintaining the graph’s structural and semantic attributes. Intelligent tutoring systems (ITS) signify a noteworthy achievement in the fusion of AI and education. Utilizing GE to model ITS can elevate their performance in predictive and annotation tasks. Current GE techniques, whether applied to heterogeneous or dynamic graphs, struggle to efficiently model ITS data. The GEs within ITS should retain their semidynamic, independent, and smooth characteristics. This article introduces a heterogeneous evolution network (HEN) for illustrating entities and relations within an ITS. Additionally, we introduce a temporal extension graph neural network (TEGNN) to model both evolving and static nodes within the HEN. In the TEGNN framework, dynamic nodes are initially improved over time through temporal extension (TE), providing an accurate depiction of each learner’s implicit state at each time step. Subsequently, we propose a stochastic temporal pooling (STP) strategy to estimate the embedding sets of all evolving nodes. This effectively enhances model efficiency and usability. Following this, a heterogeneous aggregation network is devised to proficiently extract heterogeneous features from the HEN. This network employs both node-level and relation-level attention mechanisms to craft aggregated node features. To emphasize the superiority of TEGNN, we perform experiments on several real ITS datasets and show that our method significantly outperforms the state-of-the-art approaches. The experiments validate that TE serves as an efficient framework for modeling temporal information in GE, and STP not only accelerates the training process but also enhances the resultant accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
cen完成签到,获得积分10
刚刚
Andy完成签到,获得积分10
1秒前
shuxiansheng完成签到,获得积分10
1秒前
1111发布了新的文献求助10
2秒前
顺顺顺顺完成签到,获得积分10
3秒前
lijunliang完成签到,获得积分10
4秒前
4秒前
mdomse2109发布了新的文献求助10
5秒前
hbz完成签到,获得积分10
6秒前
FSDF发布了新的文献求助10
8秒前
Bugs完成签到,获得积分10
15秒前
16秒前
xun完成签到,获得积分20
16秒前
mdomse2109完成签到,获得积分10
17秒前
18秒前
啷个吃不饱完成签到 ,获得积分10
20秒前
董二千发布了新的文献求助10
21秒前
浮游应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
周钰波完成签到,获得积分10
23秒前
Holocene完成签到,获得积分10
23秒前
29秒前
111驳回了Owen应助
31秒前
852应助合规部采纳,获得30
31秒前
熊阿阿完成签到 ,获得积分10
32秒前
xirongx完成签到 ,获得积分10
38秒前
儒雅的裘完成签到,获得积分10
39秒前
39秒前
洁净方盒发布了新的文献求助10
42秒前
yechengjie完成签到,获得积分10
45秒前
王某完成签到 ,获得积分10
46秒前
科研通AI6应助FSDF采纳,获得10
46秒前
47秒前
善学以致用应助董二千采纳,获得10
48秒前
51秒前
echo发布了新的文献求助10
51秒前
coc发布了新的文献求助20
52秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502464
求助须知:如何正确求助?哪些是违规求助? 4598341
关于积分的说明 14463804
捐赠科研通 4531872
什么是DOI,文献DOI怎么找? 2483718
邀请新用户注册赠送积分活动 1466934
关于科研通互助平台的介绍 1439567