Heterogeneous Evolution Network Embedding with Temporal Extension for Intelligent Tutoring Systems

计算机科学 嵌入 联营 图形 节点(物理) 理论计算机科学 人工智能 异构网络 扩展(谓词逻辑) 机器学习 分布式计算 工程类 无线网络 电信 程序设计语言 无线 结构工程
作者
Sannyuya Liu,Shengyingjie Liu,Zongkai Yang,Jianwen Sun,Xiaoxuan Shen,Qing Li,Rui Zou,Shangheng Du
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:42 (2): 1-28 被引量:3
标识
DOI:10.1145/3617828
摘要

Graph embedding (GE) aims to acquire low-dimensional node representations while maintaining the graph’s structural and semantic attributes. Intelligent tutoring systems (ITS) signify a noteworthy achievement in the fusion of AI and education. Utilizing GE to model ITS can elevate their performance in predictive and annotation tasks. Current GE techniques, whether applied to heterogeneous or dynamic graphs, struggle to efficiently model ITS data. The GEs within ITS should retain their semidynamic, independent, and smooth characteristics. This article introduces a heterogeneous evolution network (HEN) for illustrating entities and relations within an ITS. Additionally, we introduce a temporal extension graph neural network (TEGNN) to model both evolving and static nodes within the HEN. In the TEGNN framework, dynamic nodes are initially improved over time through temporal extension (TE), providing an accurate depiction of each learner’s implicit state at each time step. Subsequently, we propose a stochastic temporal pooling (STP) strategy to estimate the embedding sets of all evolving nodes. This effectively enhances model efficiency and usability. Following this, a heterogeneous aggregation network is devised to proficiently extract heterogeneous features from the HEN. This network employs both node-level and relation-level attention mechanisms to craft aggregated node features. To emphasize the superiority of TEGNN, we perform experiments on several real ITS datasets and show that our method significantly outperforms the state-of-the-art approaches. The experiments validate that TE serves as an efficient framework for modeling temporal information in GE, and STP not only accelerates the training process but also enhances the resultant accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Shan5发布了新的文献求助30
1秒前
syn发布了新的文献求助10
2秒前
陈瞿硕完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
5秒前
科研通AI6应助感动苡采纳,获得10
5秒前
轨迹应助rsq采纳,获得20
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
Hour发布了新的文献求助10
7秒前
misschiu发布了新的文献求助10
7秒前
情怀应助美好斓采纳,获得30
7秒前
量子星尘发布了新的文献求助10
8秒前
zhangxuhns完成签到,获得积分10
9秒前
Helene完成签到,获得积分10
9秒前
陈晶发布了新的文献求助10
10秒前
11发布了新的文献求助10
11秒前
12秒前
12秒前
Lmy完成签到 ,获得积分10
12秒前
星辰大海完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
无极微光应助李博文采纳,获得20
15秒前
15秒前
芳菲依旧应助真实的咖啡采纳,获得30
16秒前
整箱完成签到 ,获得积分10
16秒前
Anima发布了新的文献求助10
17秒前
小暴发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
汉堡包应助陈瞿硕采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756