Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging

高光谱成像 土壤质地 遥感 环境科学 纹理(宇宙学) 精准农业 计算机科学 数字土壤制图 土壤图 人工智能 土壤科学 土壤水分 地质学 地理 农业 图像(数学) 考古
作者
Qi Song,Xiaohong Gao,Yuting Song,Qiaoli Li,Zhen Chen,Runxiang Li,Hao Zhang,Sangjie Cai
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:9
标识
DOI:10.1038/s41598-023-40384-2
摘要

Abstract Soil texture is one of the important physical and natural properties of soil. Much of the current research focuses on soil texture monitoring using non-imaging geophysical spectrometers. However there are fewer studies utilizing unmanned aerial vehicle (UAV) hyperspectral data for soil texture monitoring. UAV mounted hyperspectral cameras can be used for quickly and accurately obtaining high-resolution spatial information of soil texture. A foundation has been laid for the realization of rapid soil texture surveys using unmanned airborne hyperspectral data without field sampling. This study selected three typical farmland areas in Huangshui Basin of Qinghai as the study area, and a total of 296 soil samples were collected. Data calibration of UAV spectra using laboratory spectra and field in situ spectra to explore the feasibility of applying laboratory soil texture models directly to field conditions. This results show that UAV hyperspectral imagery combined with machine learning can obtain a set of ideal processing methods. The pre-processing of the spectral data can obtain high accuracy of soil texture estimation and good mapping effect. The results of this study can provide effective technical support and decision-making assistance for future agricultural land planning on the Tibetan Plateau. The main innovation of this study is to establish a set of processing procedures and methods applicable to UAV hyperspectral imagery to provide data reference for monitoring soil texture in agricultural fields on the Tibetan Plateau.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty完成签到,获得积分10
刚刚
感谢淡然的泥猴桃转发科研通微信,获得积分50
1秒前
MM11111完成签到,获得积分10
1秒前
负责书竹发布了新的文献求助10
1秒前
陈陈发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
tang完成签到,获得积分20
4秒前
4秒前
reflux应助辣辣采纳,获得10
4秒前
lenglin完成签到,获得积分10
5秒前
念念发布了新的文献求助10
7秒前
7秒前
7秒前
唔西迪西关注了科研通微信公众号
8秒前
ccc发布了新的文献求助10
9秒前
Gengar发布了新的文献求助10
9秒前
9秒前
dushicheng完成签到,获得积分20
10秒前
yuxin发布了新的文献求助10
11秒前
科研通AI5应助m1采纳,获得10
11秒前
11秒前
lenglin发布了新的文献求助10
11秒前
在水一方应助熊二浪采纳,获得10
12秒前
dushicheng发布了新的文献求助10
12秒前
飞飞完成签到,获得积分10
12秒前
小蘑菇应助xiaoxiao采纳,获得10
13秒前
苏格拉要有底完成签到 ,获得积分20
13秒前
所所应助木木采纳,获得10
13秒前
感谢超级沁转发科研通微信,获得积分50
13秒前
Millian完成签到 ,获得积分10
14秒前
liu完成签到 ,获得积分10
15秒前
科研通AI2S应助ChenZhangyang采纳,获得30
15秒前
16秒前
感谢悟空转发科研通微信,获得积分50
16秒前
666发布了新的文献求助10
16秒前
酷酷薯片发布了新的文献求助10
17秒前
大个应助小吃货采纳,获得10
17秒前
小马甲应助米莉采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542598
求助须知:如何正确求助?哪些是违规求助? 3119973
关于积分的说明 9341143
捐赠科研通 2818043
什么是DOI,文献DOI怎么找? 1549287
邀请新用户注册赠送积分活动 722093
科研通“疑难数据库(出版商)”最低求助积分说明 712928