SciNet: Codesign of Resource Management in Cloud Computing Environments

计算机科学 云计算 供应 分布式计算 服务质量 可扩展性 云朵 资源配置 试验台 计算机网络 数据库 操作系统
作者
Shreshth Tuli,Giuliano Casale,Nicholas R. Jennings
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (12): 3590-3602 被引量:2
标识
DOI:10.1109/tc.2023.3310678
摘要

The rise of distributed cloud computing technologies has been pivotal for the large-scale adoption of Artificial Intelligence (AI) based applications for high fidelity and scalable service delivery. Systematic resource management is central in maintaining optimal Quality of Service (QoS) in cloud platforms and is divided into three fundamental types: resource provisioning, AI model deployment and workload placement. To exploit the synergy among these decision types, it becomes imperative to concurrently design (co-design) the provisioning, deployment and placement decisions for optimal QoS. As users and cloud service providers shift to non-stationary AI-based workloads, frequent decision making imposes severe time constraints on the resource management models. Existing AI-based solutions often optimize decision types independently and tend to ignore the dependencies across various system performance aspects such as energy consumption and CPU utilization, making them perform poorly in large-scale cloud systems. To address this, we propose a novel method, called SciNet, that leverages a co-simulated digital-twin of the infrastructure to capture inter-metric dependencies and accurately estimate QoS scores. To avoid expensive simulation overheads at test time, SciNet trains a neural network based imitation learner that aims to mimic an oracle, which takes optimal decisions based on co-simulated QoS estimates. Offline model training and online decision making based on the imitation learner, enables SciNet to take optimal decisions while being time-efficient. Experiments with real-life AI-based benchmark applications on a public cloud testbed show that SciNet gives up to 48% lower execution cost, 79% higher inference accuracy, 71% lower energy consumption and 56% lower response times compared to the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
大喜子完成签到,获得积分10
3秒前
搜集达人应助张凤采纳,获得10
4秒前
6秒前
zwzxtx完成签到,获得积分10
7秒前
qin发布了新的文献求助10
7秒前
8秒前
allton发布了新的文献求助10
9秒前
paul完成签到,获得积分10
9秒前
爱听歌丹南完成签到 ,获得积分10
10秒前
大喜子给大喜子的求助进行了留言
11秒前
yzzzz发布了新的文献求助10
11秒前
DamenS发布了新的文献求助10
12秒前
彭于晏应助高贵母鸡采纳,获得10
13秒前
13秒前
14秒前
15秒前
魔笛的云宝完成签到,获得积分10
15秒前
16秒前
16秒前
Lin_Yongqi发布了新的文献求助10
18秒前
18秒前
老刘发布了新的文献求助30
20秒前
追寻蓝发布了新的文献求助10
20秒前
mdjsf完成签到,获得积分10
20秒前
张凤发布了新的文献求助10
20秒前
汪CCCCC发布了新的文献求助10
20秒前
流流124141发布了新的文献求助10
22秒前
22秒前
孙某人发布了新的文献求助10
25秒前
可口可乐完成签到,获得积分20
25秒前
追寻冬萱完成签到,获得积分10
25秒前
华仔应助yzzzz采纳,获得30
26秒前
27秒前
斯文败类应助嘻嘻采纳,获得10
28秒前
大模型应助无奈笙采纳,获得10
29秒前
30秒前
31秒前
31秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349356
求助须知:如何正确求助?哪些是违规求助? 2975488
关于积分的说明 8669417
捐赠科研通 2656288
什么是DOI,文献DOI怎么找? 1454467
科研通“疑难数据库(出版商)”最低求助积分说明 673370
邀请新用户注册赠送积分活动 663821