作者
Matthew Henry,Solveig Fadnes,Lasse Løvstakken,Wadi Mawad,Luc Mertens,Siri Ann Nyrnes
摘要
Objective Bicuspid aortic valve (BAV) is associated with progressive aortic dilation. Although the etiology is complex, altered flow dynamics is thought to play an important role. Blood speckle tracking (BST) allows for visualization and quantification of complex flow, which could be useful in identifying patients at risk of root dilation and could aid in surgical planning. The aims of this study were to assess and quantify flow in the aortic root and left ventricle using BST in children with bicuspid aortic valves. Methods and results A total of 38 children <10 y of age were included (24 controls, 14 with BAV). Flow dynamics were examined using BST in the aortic root and left ventricle. Children with BAV had altered systolic flow patterns in the aortic root and higher aortic root average vorticity (25.9 [23.4–29.2] Hz vs. 17.8 [9.0–26.2] Hz, p < 0.05), vector complexity (0.17 [0.14–0.31] vs. 0.05 [0.02–0.13], p < 0.01) and rate of energy loss (7.9 [4.9–12.1] mW/m vs. 2.7 [1.2–7.4] mW/m, p = 0.01). Left ventricular average diastolic vorticity (20.9 ± 5.8 Hz vs. 11.4 ± 5.2 Hz, p < 0.01), kinetic energy (0.11 ± 0.05 J/m vs. 0.04 ± 0.02 J/m, p < 0.01), vector complexity (0.38 ± 0.1 vs. 0.23 ± 0.1, p < 0.01) and rate of energy loss (11.1 ± 4.8 mW/m vs. 2.7 ± 1.9 mW/m, p < 0.01) were higher in children with BAV. Conclusion Children with BAV exhibit altered flow dynamics in the aortic root and left ventricle in the absence of significant aortic root dilation. This may represent a substrate and potential predictor for future dilation and diastolic dysfunction. Bicuspid aortic valve (BAV) is associated with progressive aortic dilation. Although the etiology is complex, altered flow dynamics is thought to play an important role. Blood speckle tracking (BST) allows for visualization and quantification of complex flow, which could be useful in identifying patients at risk of root dilation and could aid in surgical planning. The aims of this study were to assess and quantify flow in the aortic root and left ventricle using BST in children with bicuspid aortic valves. A total of 38 children <10 y of age were included (24 controls, 14 with BAV). Flow dynamics were examined using BST in the aortic root and left ventricle. Children with BAV had altered systolic flow patterns in the aortic root and higher aortic root average vorticity (25.9 [23.4–29.2] Hz vs. 17.8 [9.0–26.2] Hz, p < 0.05), vector complexity (0.17 [0.14–0.31] vs. 0.05 [0.02–0.13], p < 0.01) and rate of energy loss (7.9 [4.9–12.1] mW/m vs. 2.7 [1.2–7.4] mW/m, p = 0.01). Left ventricular average diastolic vorticity (20.9 ± 5.8 Hz vs. 11.4 ± 5.2 Hz, p < 0.01), kinetic energy (0.11 ± 0.05 J/m vs. 0.04 ± 0.02 J/m, p < 0.01), vector complexity (0.38 ± 0.1 vs. 0.23 ± 0.1, p < 0.01) and rate of energy loss (11.1 ± 4.8 mW/m vs. 2.7 ± 1.9 mW/m, p < 0.01) were higher in children with BAV. Children with BAV exhibit altered flow dynamics in the aortic root and left ventricle in the absence of significant aortic root dilation. This may represent a substrate and potential predictor for future dilation and diastolic dysfunction.