A Survey of Large Language Models in Medicine: Principles, Applications, and Challenges

数据科学 计算机科学 管理科学 工程伦理学 工程类
作者
Hongjian Zhou,Boyang Gu,Xinyu Zou,Yiru Li,Sam S. Chen,Peilin Zhou,Junling Liu,Yining Hua,Chengfeng Mao,Xian Wu,Zheng Li,Fenglin Liu
出处
期刊:Cornell University - arXiv 被引量:9
标识
DOI:10.48550/arxiv.2311.05112
摘要

Large language models (LLMs), such as ChatGPT, have received substantial attention due to their capabilities for understanding and generating human language. While there has been a burgeoning trend in research focusing on the employment of LLMs in supporting different medical tasks (e.g., enhancing clinical diagnostics and providing medical education), a review of these efforts, particularly their development, practical applications, and outcomes in medicine, remains scarce. Therefore, this review aims to provide a detailed overview of the development and deployment of LLMs in medicine, including the challenges and opportunities they face. In terms of development, we provide a detailed introduction to the principles of existing medical LLMs, including their basic model structures, number of parameters, and sources and scales of data used for model development. It serves as a guide for practitioners in developing medical LLMs tailored to their specific needs. In terms of deployment, we offer a comparison of the performance of different LLMs across various medical tasks, and further compare them with state-of-the-art lightweight models, aiming to provide an understanding of the advantages and limitations of LLMs in medicine. Overall, in this review, we address the following questions: 1) What are the practices for developing medical LLMs 2) How to measure the medical task performance of LLMs in a medical setting? 3) How have medical LLMs been employed in real-world practice? 4) What challenges arise from the use of medical LLMs? and 5) How to more effectively develop and deploy medical LLMs? By answering these questions, this review aims to provide insights into the opportunities for LLMs in medicine and serve as a practical resource. We also maintain a regularly updated list of practical guides on medical LLMs at: https://github.com/AI-in-Health/MedLLMsPracticalGuide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
龙龍龖龘发布了新的文献求助10
2秒前
赘婿应助mo采纳,获得10
2秒前
3秒前
3秒前
4秒前
CipherSage应助新奇采纳,获得10
5秒前
6秒前
bkagyin应助风登楼采纳,获得10
7秒前
mayue完成签到,获得积分10
7秒前
lcdamoy完成签到,获得积分10
7秒前
8秒前
CodeCraft应助Soleil采纳,获得10
10秒前
路程完成签到 ,获得积分10
11秒前
1147468624完成签到,获得积分20
13秒前
木仔仔发布了新的文献求助10
13秒前
YL完成签到,获得积分10
14秒前
再睡一夏完成签到 ,获得积分10
15秒前
刘jinkai发布了新的文献求助10
15秒前
Akim应助平常芝麻采纳,获得10
16秒前
16秒前
16秒前
16秒前
Lucas应助hxy采纳,获得10
17秒前
20秒前
心随以动发布了新的文献求助10
21秒前
21秒前
小猪啵比发布了新的文献求助10
21秒前
bastien完成签到 ,获得积分10
25秒前
ddl发布了新的文献求助10
25秒前
26秒前
研友_5Z4ZA5发布了新的文献求助10
27秒前
千宝完成签到 ,获得积分10
27秒前
30秒前
Gg驳回了科目三应助
30秒前
星辰大海应助木头采纳,获得10
30秒前
萧水白应助真实的薯条采纳,获得10
30秒前
整齐星月发布了新的文献求助10
31秒前
34秒前
杨大强发布了新的文献求助10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133522
求助须知:如何正确求助?哪些是违规求助? 2784556
关于积分的说明 7767520
捐赠科研通 2439740
什么是DOI,文献DOI怎么找? 1297013
科研通“疑难数据库(出版商)”最低求助积分说明 624827
版权声明 600791