清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integration of Decision-Making and Motion Planning for Autonomous Driving Based on Double-Layer Reinforcement Learning Framework

强化学习 运动规划 弹道 计算机科学 运动(物理) 功能(生物学) 贝尔曼方程 图层(电子) 集合(抽象数据类型) 人工智能 工程类 控制理论(社会学) 控制(管理) 模拟 控制工程 数学优化 机器人 数学 化学 物理 有机化学 天文 进化生物学 生物 程序设计语言
作者
Yaping Liao,Guizhen Yu,Peng Chen,Bin Zhou,Han Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3142-3158 被引量:2
标识
DOI:10.1109/tvt.2023.3326548
摘要

Autonomous driving involves multi-timescale and multi-objective tasks coupled with long-term driving decision and short-term motion planning. However, existing studies tend to investigate them separately or assume they were synchronous and instantaneous, failing to deeply interpret their interconnections in autonomous driving. To address it, this study explored driving decision and motion planning in an integrated manner, and proposed a double-layer reinforcement learning (RL) framework to couple and optimize these two modules. Specifically, on the upper layer of the framework, a trajectory-level reward function associated with safety, efficiency, comfort and decision execution was proposed, and a decision-making model was established based on value function-based deep reinforcement learning (DRL) algorithms. Then, the reward function of the upper layer was taken as the objective function of the lower layer with relevant state constraints. The model predictive control (MPC) method was used to derive the optimal maneuver sequence guided by driving decisions, and the performance evaluation of motion planning was fed back to the decision-making for DRL parameter optimization. Accordingly, a closed-loop mechanism was developed consisting of forward decision-making output guidance and backward motion planning feedback optimization. Then, two-lane and three-lane interactive scenarios were set for framework training and testing. Last, comparative experiments were conducted using NGSIM dataset. The results demonstrated the effectiveness and the enhanced driving performance of the proposed framework in contrast to four benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
斯文败类应助勤恳傲旋采纳,获得10
1分钟前
1分钟前
义气的书雁完成签到,获得积分10
1分钟前
1分钟前
ping发布了新的文献求助10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
勤恳傲旋发布了新的文献求助10
1分钟前
hzh完成签到 ,获得积分10
1分钟前
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
ping完成签到,获得积分10
1分钟前
Spring完成签到,获得积分10
2分钟前
AmyHu完成签到,获得积分10
2分钟前
MGraceLi_sci完成签到,获得积分10
2分钟前
科研通AI5应助勤恳傲旋采纳,获得10
2分钟前
3分钟前
勤恳傲旋发布了新的文献求助10
3分钟前
一八四完成签到,获得积分10
3分钟前
方白秋完成签到,获得积分10
4分钟前
紫熊发布了新的文献求助10
4分钟前
Z1070741749完成签到,获得积分10
4分钟前
Axs完成签到,获得积分10
4分钟前
4分钟前
story发布了新的文献求助10
4分钟前
可爱的函函应助story采纳,获得30
5分钟前
5分钟前
小米辣发布了新的文献求助30
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
小二郎应助小米辣采纳,获得30
5分钟前
紫熊完成签到,获得积分10
5分钟前
6分钟前
雪山飞龙完成签到,获得积分10
6分钟前
Msong发布了新的文献求助10
6分钟前
大医仁心完成签到 ,获得积分10
7分钟前
bkagyin应助科研通管家采纳,获得10
7分钟前
liufan完成签到 ,获得积分10
8分钟前
Mannone完成签到,获得积分10
9分钟前
9分钟前
fishss完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569440
求助须知:如何正确求助?哪些是违规求助? 3991537
关于积分的说明 12355933
捐赠科研通 3663857
什么是DOI,文献DOI怎么找? 2019109
邀请新用户注册赠送积分活动 1053586
科研通“疑难数据库(出版商)”最低求助积分说明 941148