Integration of Decision-Making and Motion Planning for Autonomous Driving Based on Double-Layer Reinforcement Learning Framework

强化学习 运动规划 弹道 计算机科学 运动(物理) 功能(生物学) 贝尔曼方程 图层(电子) 集合(抽象数据类型) 人工智能 工程类 控制理论(社会学) 控制(管理) 模拟 控制工程 数学优化 机器人 数学 物理 天文 有机化学 化学 程序设计语言 生物 进化生物学
作者
Yaping Liao,Guizhen Yu,Peng Chen,Bin Zhou,Guizhen Yu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3142-3158
标识
DOI:10.1109/tvt.2023.3326548
摘要

Autonomous driving involves multi-timescale and multi-objective tasks coupled with long-term driving decision and short-term motion planning. However, existing studies tend to investigate them separately or assume they were synchronous and instantaneous, failing to deeply interpret their interconnections in autonomous driving. To address it, this study explored driving decision and motion planning in an integrated manner, and proposed a double-layer reinforcement learning (RL) framework to couple and optimize these two modules. Specifically, on the upper layer of the framework, a trajectory-level reward function associated with safety, efficiency, comfort and decision execution was proposed, and a decision-making model was established based on value function-based deep reinforcement learning (DRL) algorithms. Then, the reward function of the upper layer was taken as the objective function of the lower layer with relevant state constraints. The model predictive control (MPC) method was used to derive the optimal maneuver sequence guided by driving decisions, and the performance evaluation of motion planning was fed back to the decision-making for DRL parameter optimization. Accordingly, a closed-loop mechanism was developed consisting of forward decision-making output guidance and backward motion planning feedback optimization. Then, two-lane and three-lane interactive scenarios were set for framework training and testing. Last, comparative experiments were conducted using NGSIM dataset. The results demonstrated the effectiveness and the enhanced driving performance of the proposed framework in contrast to four benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
1秒前
1秒前
2秒前
林一完成签到,获得积分10
2秒前
韭菜完成签到,获得积分20
4秒前
恋空发布了新的文献求助10
5秒前
6秒前
Dr.发布了新的文献求助30
6秒前
8秒前
动听的笑南完成签到,获得积分10
8秒前
畅快的道之完成签到,获得积分10
9秒前
科研通AI2S应助dhjic采纳,获得10
9秒前
舒服的灵安完成签到 ,获得积分10
10秒前
cc完成签到,获得积分10
11秒前
午后狂睡完成签到 ,获得积分10
12秒前
爱吃萝卜的Bob完成签到,获得积分10
12秒前
iNk应助动听的笑南采纳,获得10
13秒前
啊啊啊完成签到 ,获得积分10
13秒前
三笠发布了新的文献求助10
14秒前
16秒前
imomoe完成签到,获得积分10
16秒前
清秀的凝蝶完成签到,获得积分10
16秒前
韭菜盒子完成签到,获得积分20
17秒前
17秒前
19秒前
小北完成签到,获得积分10
20秒前
77完成签到 ,获得积分10
20秒前
Linda完成签到,获得积分10
21秒前
heylin发布了新的文献求助10
22秒前
tt完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
不能当饭吃完成签到,获得积分10
25秒前
努力向上的小刘完成签到,获得积分10
25秒前
25秒前
盐好甜发布了新的文献求助20
26秒前
受伤翠容发布了新的文献求助10
28秒前
Dr.发布了新的文献求助10
28秒前
加油发布了新的文献求助10
29秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085527
求助须知:如何正确求助?哪些是违规求助? 2738431
关于积分的说明 7549700
捐赠科研通 2388188
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591