Integration of Decision-Making and Motion Planning for Autonomous Driving Based on Double-Layer Reinforcement Learning Framework

强化学习 运动规划 弹道 计算机科学 运动(物理) 功能(生物学) 贝尔曼方程 图层(电子) 集合(抽象数据类型) 人工智能 工程类 控制理论(社会学) 控制(管理) 模拟 控制工程 数学优化 机器人 数学 化学 物理 有机化学 天文 进化生物学 生物 程序设计语言
作者
Yaping Liao,Guizhen Yu,Peng Chen,Bin Zhou,Han Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3142-3158 被引量:2
标识
DOI:10.1109/tvt.2023.3326548
摘要

Autonomous driving involves multi-timescale and multi-objective tasks coupled with long-term driving decision and short-term motion planning. However, existing studies tend to investigate them separately or assume they were synchronous and instantaneous, failing to deeply interpret their interconnections in autonomous driving. To address it, this study explored driving decision and motion planning in an integrated manner, and proposed a double-layer reinforcement learning (RL) framework to couple and optimize these two modules. Specifically, on the upper layer of the framework, a trajectory-level reward function associated with safety, efficiency, comfort and decision execution was proposed, and a decision-making model was established based on value function-based deep reinforcement learning (DRL) algorithms. Then, the reward function of the upper layer was taken as the objective function of the lower layer with relevant state constraints. The model predictive control (MPC) method was used to derive the optimal maneuver sequence guided by driving decisions, and the performance evaluation of motion planning was fed back to the decision-making for DRL parameter optimization. Accordingly, a closed-loop mechanism was developed consisting of forward decision-making output guidance and backward motion planning feedback optimization. Then, two-lane and three-lane interactive scenarios were set for framework training and testing. Last, comparative experiments were conducted using NGSIM dataset. The results demonstrated the effectiveness and the enhanced driving performance of the proposed framework in contrast to four benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鞑靼完成签到 ,获得积分10
1秒前
ABC完成签到,获得积分10
2秒前
Kototo完成签到,获得积分10
2秒前
董春伟应助赵与成采纳,获得10
3秒前
4秒前
在水一方应助XXY采纳,获得10
5秒前
弥里完成签到,获得积分10
5秒前
6秒前
科研通AI5应助sh生生采纳,获得10
7秒前
量子星尘发布了新的文献求助20
7秒前
浮游应助落后的小猫咪采纳,获得10
7秒前
科研通AI5应助qwertyuiop采纳,获得10
7秒前
Evelyn完成签到,获得积分10
10秒前
乐乐应助daishuheng采纳,获得10
11秒前
77在七月发布了新的文献求助10
11秒前
FashionBoy应助ZN采纳,获得10
12秒前
Jasper应助虚幻盼晴采纳,获得10
12秒前
执刀手完成签到,获得积分10
13秒前
14秒前
15秒前
帅哥发布了新的文献求助10
16秒前
CsY完成签到,获得积分10
16秒前
16秒前
19秒前
20秒前
王嘉豪发布了新的文献求助10
20秒前
Swii完成签到,获得积分10
21秒前
洋洋发布了新的文献求助10
21秒前
顾矜应助楠枫采纳,获得10
22秒前
23秒前
丘比特应助洁净灭男采纳,获得10
23秒前
24秒前
我是老大应助bingo0913采纳,获得10
24秒前
爆米花应助tiny_face采纳,获得10
24秒前
seedcui完成签到,获得积分10
24秒前
24秒前
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4897026
求助须知:如何正确求助?哪些是违规求助? 4178393
关于积分的说明 12970953
捐赠科研通 3941893
什么是DOI,文献DOI怎么找? 2162399
邀请新用户注册赠送积分活动 1180912
关于科研通互助平台的介绍 1086525