Multimodal Tremor Suppression of the Wrist Using FES and Electric Motors–A Simulation Study

功能性电刺激 计算机科学 扭矩 物理医学与康复 手腕 肌肉疲劳 肌电图 刺激 医学 心理学 神经科学 物理 放射科 热力学
作者
Zahra Habibollahi,Yue Zhou,Mary E. Jenkins,S. Jayne Garland,Michael D. Naish,Ana Luisa Trejos
出处
期刊:IEEE robotics and automation letters 卷期号:8 (11): 7543-7550 被引量:4
标识
DOI:10.1109/lra.2023.3316607
摘要

Wearable technologies have shown promising results in tremor management, making them a feasible alternative to current treatments. Devices based on active actuation, such as electric motors, show high tremor suppression rate, but are heavy and bulky. In contrast, devices based on functional electrical stimulation (FES) are lightweight and smaller in size, but might cause pain, discomfort, and FES-induced muscle fatigue. Also, when the stimulation parameters do not adapt to the tremor, their suppression performance is compromised. Therefore, a multimodal approach was developed and tested by modeling wrist joint dynamics and simulating the muscle response to FES based on an existing dataset collected from 18 participants with Parkinson's disease. The goal was to evaluate and compare the performance of a multimodal device to that of an FES-only or an electric-motor-only approach. A nonlinear control system allocates the control effort between FES and motor torque based on the tremor level. Results showed an improvement in tremor suppression level (up to 12%) in the multimodal approach compared to FES only when there is voluntary motion. Also, the voluntary motion tracking error was lower in the multimodal approach, compared to the FES-only method (up to 57%). No notable improvement in tremor suppression level or voluntary motion tracking error was observed by comparing the multimodal system and the motor only approach. However, the advantage of using a multimodal system compared to the motor-only system is the reduction of the required motor torque resulting in reduced weight and size of the final device.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助heiheiyixiao采纳,获得10
刚刚
852应助易安采纳,获得10
1秒前
1秒前
健忘的寄瑶完成签到,获得积分10
1秒前
2秒前
苏苏发布了新的文献求助10
2秒前
2秒前
3秒前
阿梁完成签到,获得积分10
4秒前
4秒前
4秒前
情怀应助笑点低的鸿采纳,获得10
6秒前
xuexue完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
stars发布了新的文献求助10
8秒前
Ahsndm发布了新的文献求助10
10秒前
tttck发布了新的文献求助10
10秒前
11秒前
12秒前
figshare发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助zzr元亨利贞采纳,获得10
13秒前
asdasd发布了新的文献求助30
14秒前
大个应助温暖天与采纳,获得50
15秒前
Chris学长完成签到,获得积分10
16秒前
17秒前
17秒前
lil关注了科研通微信公众号
19秒前
汉堡包应助如意采纳,获得20
19秒前
cainning发布了新的文献求助10
19秒前
科研通AI2S应助Hezhiwu777采纳,获得10
19秒前
19秒前
20秒前
21秒前
21秒前
北风应助风趣寻芹采纳,获得10
22秒前
於茗发布了新的文献求助10
22秒前
Dino发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169