Improving the quality of high-frequency surface waves retrieved from ultrashort traffic-induced noise based on eigenvalue selection

噪音(视频) 色散(光学) 声学 虚假关系 物理 计算机科学 光学 地质学 人工智能 机器学习 图像(数学)
作者
Lixin Ning,Jianghai Xia,Tianyu Dai,Hao Zhang,Liu Ya,Yongtaek Hong
出处
期刊:Geophysical Journal International [Oxford University Press]
标识
DOI:10.1093/gji/ggad343
摘要

Summary Stacking cross-correlations of time windows from continuous long-duration noise data is an effective solution to improve the quality of retrieved high-frequency (> 1 Hz) surface waves and the accuracy of dispersion energy. The observation duration, however, is usually limited due to traffic control, making it difficult for ambient noise sources to fulfill the requirement of uniform distribution. Additionally, strong human-related noise sources exist near survey lines deployed along urban roads, which often act as interfering sources, such as local noise sources located in the non-stationary-phase zones. Local noise sources cause spurious arrivals in cross-correlations, degrade signal-to-noise ratio (SNR) of retrieved surface waves and distort their dispersion energy. To attenuate these adverse effects and improve the quality of surface waves retrieved from ultrashort noise data, we perform the eigendecomposition technique on the cross-spectral density matrix (CSDM) and apply a Wiener filter on the decomposed eigenvectors. The correct eigenvalues and the corresponding filtered eigenvectors are selected to reconstruct the CSDM related to stationary-phase sources based on the matched-field processing outputs. This procedure significantly suppresses the back-propagated signals and efficiently recovers surface waves by improving the contribution of the stationary-phase sources. We validate our scheme on a synthetic test and two practical applications and show that we obtain higher-SNR virtual shot gathers and higher-quality surface-wave dispersion images compared to seismic interferometry. Our scheme can be a new alternative technique to conduct passive seismic surveys in densely populated urban environments without being affected by local noise sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默哈密瓜完成签到 ,获得积分10
1秒前
身处人海完成签到,获得积分10
1秒前
Singularity应助暴躁的安柏采纳,获得10
1秒前
Singularity应助暴躁的安柏采纳,获得10
1秒前
大模型应助皓月千里采纳,获得10
1秒前
1秒前
Jim完成签到,获得积分10
2秒前
尼亚吉拉发布了新的文献求助10
2秒前
sternen发布了新的文献求助30
2秒前
2秒前
2秒前
迪迦驳回了所所应助
3秒前
猪猪hero发布了新的文献求助10
3秒前
热心芷烟完成签到,获得积分10
3秒前
3秒前
敏捷的猪猪侠完成签到,获得积分10
4秒前
4秒前
4秒前
咕噜仔发布了新的文献求助50
4秒前
诚c发布了新的文献求助10
5秒前
5秒前
饭宝发布了新的文献求助10
6秒前
SciGPT应助大胆的期待采纳,获得10
6秒前
奋斗夏烟完成签到,获得积分20
6秒前
气泡水完成签到 ,获得积分10
6秒前
rosy完成签到,获得积分10
7秒前
rjy完成签到 ,获得积分10
7秒前
8秒前
沙111发布了新的文献求助10
8秒前
MADKAI发布了新的文献求助10
8秒前
9秒前
zhoull完成签到 ,获得积分10
9秒前
9秒前
9秒前
学术蝗虫发布了新的文献求助10
9秒前
aurora完成签到,获得积分10
10秒前
bopbopbaby发布了新的文献求助200
10秒前
sll完成签到,获得积分10
10秒前
犹豫的一斩应助迅速冰岚采纳,获得10
10秒前
聂裕铭完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678