Improving the quality of high-frequency surface waves retrieved from ultrashort traffic-induced noise based on eigenvalue selection

噪音(视频) 色散(光学) 声学 虚假关系 物理 计算机科学 光学 地质学 人工智能 机器学习 图像(数学)
作者
Lixin Ning,Jianghai Xia,Tianyu Dai,Hao Zhang,Liu Ya,Yongtaek Hong
出处
期刊:Geophysical Journal International [Oxford University Press]
标识
DOI:10.1093/gji/ggad343
摘要

Summary Stacking cross-correlations of time windows from continuous long-duration noise data is an effective solution to improve the quality of retrieved high-frequency (> 1 Hz) surface waves and the accuracy of dispersion energy. The observation duration, however, is usually limited due to traffic control, making it difficult for ambient noise sources to fulfill the requirement of uniform distribution. Additionally, strong human-related noise sources exist near survey lines deployed along urban roads, which often act as interfering sources, such as local noise sources located in the non-stationary-phase zones. Local noise sources cause spurious arrivals in cross-correlations, degrade signal-to-noise ratio (SNR) of retrieved surface waves and distort their dispersion energy. To attenuate these adverse effects and improve the quality of surface waves retrieved from ultrashort noise data, we perform the eigendecomposition technique on the cross-spectral density matrix (CSDM) and apply a Wiener filter on the decomposed eigenvectors. The correct eigenvalues and the corresponding filtered eigenvectors are selected to reconstruct the CSDM related to stationary-phase sources based on the matched-field processing outputs. This procedure significantly suppresses the back-propagated signals and efficiently recovers surface waves by improving the contribution of the stationary-phase sources. We validate our scheme on a synthetic test and two practical applications and show that we obtain higher-SNR virtual shot gathers and higher-quality surface-wave dispersion images compared to seismic interferometry. Our scheme can be a new alternative technique to conduct passive seismic surveys in densely populated urban environments without being affected by local noise sources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李晨语发布了新的文献求助10
2秒前
Steven完成签到,获得积分10
2秒前
2秒前
sh完成签到,获得积分20
2秒前
胡楠发布了新的文献求助10
2秒前
勤奋尔丝完成签到 ,获得积分10
2秒前
3秒前
田様应助sinlar采纳,获得30
3秒前
呋喃发布了新的文献求助10
3秒前
3秒前
3秒前
miyamoto完成签到,获得积分20
3秒前
rrrr发布了新的文献求助10
4秒前
zhenglingying完成签到,获得积分10
4秒前
XX完成签到,获得积分10
4秒前
巅峰小学生完成签到,获得积分20
5秒前
超级翠应助wuran采纳,获得10
5秒前
扶桑发布了新的文献求助10
7秒前
领导范儿应助myyang采纳,获得10
7秒前
Owen应助单薄怡采纳,获得30
7秒前
舸宇发布了新的文献求助10
7秒前
孔雀翎发布了新的文献求助10
8秒前
俊逸的代曼完成签到,获得积分10
8秒前
精明柜子应助美好的觅云采纳,获得100
9秒前
蔡徐坤发布了新的文献求助30
9秒前
9秒前
9秒前
欢喜的丹寒完成签到,获得积分20
9秒前
10秒前
Biohacking完成签到,获得积分10
10秒前
shim完成签到,获得积分10
10秒前
10秒前
10秒前
LL完成签到,获得积分10
10秒前
水本无忧87完成签到,获得积分10
11秒前
11秒前
科研通AI6应助myyang采纳,获得10
12秒前
JHHHH完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302