Modeling, Optimization, and Robustness Analysis of Evidential Reasoning Rule Under Multidiscernment Framework

稳健性(进化) 计算机科学 基于规则的系统 证据推理法 人工智能 稳健性测试 数据挖掘 决策支持系统 生物化学 化学 商业决策图 基因 模糊逻辑
作者
Shuaiwen Tang,You Cao,Jiang Jiang,Zhijie Zhou,Zhigang Li
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:59 (6): 8981-8994 被引量:1
标识
DOI:10.1109/taes.2023.3312351
摘要

Evidential reasoning (ER) rule has been widely used in the fields of information fusion, multiattribute decision making, and pattern recognition. In current studies of ER rule, there is a strict one-to-one correspondence between the framework of discernment (FoD) of evidence and the FoD of reasoning results. However, this may not be satisfied in engineering practice, making it difficult to conduct the reasoning. When the element of FoD is changed, how the reasoning result will change is also a focus that deserves attention. As such, in this article, the modeling, optimization, and robustness analysis method of ER rule under multidiscernment framework is proposed. Specifically, the ER rule with transformation matrix is proposed to unify the evidence with different FoDs into the same FoD as reasoning results. A parameter optimization model is established based on the expected utility and interpretable constraints. A robustness analysis method of the proposed ER rule is proposed in the context of perturbation to further explore its performance. Particularly, the generation and transmission rules of perturbation are described, and two robustness criteria are defined. A case study of health assessment of laser gyroscope, the mainstream navigation equipment in the aerospace field, is conducted to present the implementation of the proposed method and verify its effectiveness in engineering practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高发布了新的文献求助10
刚刚
4秒前
深情安青应助机智的青槐采纳,获得10
4秒前
茶茶发布了新的文献求助10
4秒前
szl发布了新的文献求助10
4秒前
Lucas应助京阿尼采纳,获得10
5秒前
甜甜晓露完成签到,获得积分10
6秒前
科研通AI5应助qifa采纳,获得10
6秒前
shrike完成签到 ,获得积分10
6秒前
有魅力白开水完成签到,获得积分20
6秒前
小蒲完成签到 ,获得积分10
7秒前
万能图书馆应助大力鱼采纳,获得10
7秒前
8秒前
Rrr发布了新的文献求助10
9秒前
跳跃的静曼完成签到,获得积分10
9秒前
丰富的不惜完成签到,获得积分10
10秒前
11秒前
wfc完成签到,获得积分10
11秒前
浅梨涡完成签到 ,获得积分10
13秒前
JamesPei应助椰子熟了耶采纳,获得20
14秒前
hanyang965发布了新的文献求助10
14秒前
orixero应助喵呜采纳,获得10
14秒前
14秒前
14秒前
15秒前
en发布了新的文献求助10
15秒前
16秒前
白宝宝北北白应助氕氘氚采纳,获得10
16秒前
17秒前
进取拼搏完成签到,获得积分10
17秒前
hehsk完成签到,获得积分10
17秒前
无限鞅完成签到,获得积分20
17秒前
18秒前
DY完成签到 ,获得积分10
19秒前
郑仕完成签到,获得积分10
19秒前
19秒前
进取拼搏发布了新的文献求助10
20秒前
顺顺发布了新的文献求助10
20秒前
20秒前
在水一方应助涛涛采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808