亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TensorBank:Tensor Lakehouse for Foundation Model Training

计算机科学 块(置换群论) 困惑 张量(固有定义) 阅读(过程) 建筑 地理空间分析 人工智能 大数据 语义学(计算机科学) 对象(语法) 理论计算机科学 数据挖掘 语言模型 程序设计语言 艺术 视觉艺术 地图学 法学 纯数学 地理 数学 政治学 几何学
作者
Romeo Kienzler,Benedikt Blumenstiel,Zoltán Nagy,S. Karthik Mukkavilli,Johannes Schmude,Marcus Freitag,Michael Behrendt,Daniel Civitarese,Naomi Simumba,Daiki Kimura,Hendrik F. Hamann
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.02094
摘要

Storing and streaming high dimensional data for foundation model training became a critical requirement with the rise of foundation models beyond natural language. In this paper we introduce TensorBank, a petabyte scale tensor lakehouse capable of streaming tensors from Cloud Object Store (COS) to GPU memory at wire speed based on complex relational queries. We use Hierarchical Statistical Indices (HSI) for query acceleration. Our architecture allows to directly address tensors on block level using HTTP range reads. Once in GPU memory, data can be transformed using PyTorch transforms. We provide a generic PyTorch dataset type with a corresponding dataset factory translating relational queries and requested transformations as an instance. By making use of the HSI, irrelevant blocks can be skipped without reading them as those indices contain statistics on their content at different hierarchical resolution levels. This is an opinionated architecture powered by open standards and making heavy use of open-source technology. Although, hardened for production use using geospatial-temporal data, this architecture generalizes to other use case like computer vision, computational neuroscience, biological sequence analysis and more.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情依白发布了新的文献求助10
6秒前
33秒前
NFS发布了新的文献求助10
40秒前
空儒完成签到 ,获得积分10
44秒前
45秒前
Ken发布了新的文献求助10
49秒前
1分钟前
1分钟前
默默曼冬发布了新的文献求助10
1分钟前
aayy完成签到,获得积分20
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
aayy关注了科研通微信公众号
1分钟前
河狸完成签到,获得积分10
2分钟前
2分钟前
许大脚完成签到 ,获得积分10
2分钟前
2分钟前
忞航完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
隐形曼青应助momo采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
哈哈发布了新的文献求助30
4分钟前
小圭韦发布了新的文献求助10
4分钟前
南寅完成签到,获得积分10
5分钟前
5分钟前
默默曼冬完成签到,获得积分10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
mirror应助小圭韦采纳,获得10
5分钟前
天雨流芳完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
Yuki完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681628
求助须知:如何正确求助?哪些是违规求助? 5011683
关于积分的说明 15175918
捐赠科研通 4841236
什么是DOI,文献DOI怎么找? 2594994
邀请新用户注册赠送积分活动 1547971
关于科研通互助平台的介绍 1506006