Current-induced solder evolution and mechanical property of Sn-3.0Ag-0.5Cu solder joints under thermal shock condition

焊接 热冲击 材料科学 冶金 休克(循环) 热的 电流(流体) 复合材料 工程类 热力学 医学 电气工程 物理 内科学
作者
Shengli Li,Chunjin Hang,Wei Zhang,Qilong Guan,Xiaojiu Tang,Dan Yu,Ying Ding,Xiu‐Li Wang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:970: 172519-172519 被引量:10
标识
DOI:10.1016/j.jallcom.2023.172519
摘要

Solder joint reliability suffers great challenges due to high current density and miniature solder bump diameter of electronic packages at cryogenic temperature. To tackle these issues, the solder microstructure evolution and the corresponding failure mechanism should be emphasized. In this study, the current-induced microstructure characteristics and mechanical behavior of Sn-3.0Ag-0.5Cu (SAC305) solder joints during thermal shock process was thoroughly addressed over cycles by combining diffusional, electrical, thermal and mechanical features. This result verified that the combining method of thermal shock and electromigration (EM) contributed to the atom diffusion and high thermal stress formation, further causing intermetallic compound (IMC) growth, the repaid dissolution of Cu pad and high thermal stress of the solder joints. High stress induced by either the thermal expansion mismatch of different component, large temperature change (ΔT =346 ℃) and severe lattice distortion became the direct reason for twins and cracks formation of SAC305 solder joints. The combination of crack propagated along the interface and the quick dissolution of Cu substrate at the corner accelerated the eventually failure of the solder joints. Moreover, as the thermal chock cycles was extended, the initiation and propagation of cracks at the cathode side weaken the cathodic shear strength. High stress-induced twin formation at the interface effectively moderated the shear strength degradation due to anode IMC growth after 9 cycles. This study contributed to thoroughly grasp the failure mechanism of the solder joints and design the twin-strengthened Sn-based solder joints under the coupling effects of extreme temperature variation and current stressing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张欣宇发布了新的文献求助10
1秒前
Abdurrahman完成签到,获得积分10
1秒前
蓝天发布了新的文献求助10
1秒前
硬币完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
科研求求你嘛完成签到,获得积分10
2秒前
愉快的苑博完成签到,获得积分10
3秒前
次一口多多完成签到,获得积分10
3秒前
3秒前
xx发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
liu发布了新的文献求助10
4秒前
yordeabese完成签到,获得积分10
4秒前
Ava应助轩辕雨文采纳,获得20
4秒前
4秒前
4秒前
Shalala完成签到,获得积分10
5秒前
5秒前
Sunyidan完成签到,获得积分10
5秒前
zhangyue7777完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
cc完成签到 ,获得积分10
7秒前
安_完成签到,获得积分10
7秒前
8秒前
enen完成签到,获得积分10
8秒前
活泼音响完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助莉莉酱采纳,获得10
9秒前
白鹿发布了新的文献求助10
9秒前
10秒前
一一应助zyy采纳,获得10
11秒前
12秒前
科研通AI6应助liu采纳,获得10
12秒前
糊涂的MJ完成签到,获得积分20
12秒前
幼儿园抢饭第一名完成签到,获得积分20
13秒前
wz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836