焊接
热冲击
材料科学
冶金
休克(循环)
热的
电流(流体)
复合材料
工程类
热力学
医学
物理
内科学
电气工程
作者
Shengli Li,Chunjin Hang,Wei Zhang,Qilong Guan,Xiaojiu Tang,Dan Yu,Ying Ding,Xiu‐Li Wang
标识
DOI:10.1016/j.jallcom.2023.172519
摘要
Solder joint reliability suffers great challenges due to high current density and miniature solder bump diameter of electronic packages at cryogenic temperature. To tackle these issues, the solder microstructure evolution and the corresponding failure mechanism should be emphasized. In this study, the current-induced microstructure characteristics and mechanical behavior of Sn-3.0Ag-0.5Cu (SAC305) solder joints during thermal shock process was thoroughly addressed over cycles by combining diffusional, electrical, thermal and mechanical features. This result verified that the combining method of thermal shock and electromigration (EM) contributed to the atom diffusion and high thermal stress formation, further causing intermetallic compound (IMC) growth, the repaid dissolution of Cu pad and high thermal stress of the solder joints. High stress induced by either the thermal expansion mismatch of different component, large temperature change (ΔT =346 ℃) and severe lattice distortion became the direct reason for twins and cracks formation of SAC305 solder joints. The combination of crack propagated along the interface and the quick dissolution of Cu substrate at the corner accelerated the eventually failure of the solder joints. Moreover, as the thermal chock cycles was extended, the initiation and propagation of cracks at the cathode side weaken the cathodic shear strength. High stress-induced twin formation at the interface effectively moderated the shear strength degradation due to anode IMC growth after 9 cycles. This study contributed to thoroughly grasp the failure mechanism of the solder joints and design the twin-strengthened Sn-based solder joints under the coupling effects of extreme temperature variation and current stressing.
科研通智能强力驱动
Strongly Powered by AbleSci AI