CCFT: The Convolution and Cross-Fusion Transformer for Fault Diagnosis of Bearings

融合 变压器 计算机科学 卷积(计算机科学) 断层(地质) 人工智能 地质学 工程类 电气工程 地震学 电压 人工神经网络 哲学 语言学
作者
Tantao Lin,Yongsheng Zhu,Zhijun Ren,Kai Huang,Dawei Gao
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 2161-2172 被引量:4
标识
DOI:10.1109/tmech.2023.3312935
摘要

A single-vibration signal is no longer adequate to fulfill the requirements of intelligent fault diagnosis (IFD) of bearings in complex systems. With the rapid advancement of the industrial Internet of Things, IFD methods based on multimodal information fusion have gained popularity. Acoustic signals are noninvasive, easily captured, and have a wide monitoring range. Therefore, acoustic-vibration fusion IFD (AVFIFD) holds promising application prospects. Nevertheless, current AVFIFD methods suffer from two limitations that lead to reduced accuracy: insufficient consideration of both local and temporal features during the feature extraction process, and inadequate emphasis on the correlation between acoustic and vibration features. To overcome these limitations and enhance the accuracy of AVFIFD, we propose the convolution and cross-fusion transformer (CCFT), which combines convolution and transformers to enhance local and temporal feature extraction and introduces cross-fusion transformers to improve the correlation between acoustic and vibration features. Finally, fault type identification is accomplished through a fusion classification module. In two case studies, CCFT outperforms other fusion methods. Additional visualization analysis illustrates that the cross-fusion transformer can improve the correlation of fault information by progressively minimizing the discrepancies between acoustic and vibration feature representations at each layer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
梓歆发布了新的文献求助10
1秒前
2秒前
liang_zai发布了新的文献求助10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
魁梧的路灯完成签到,获得积分10
6秒前
乐乐应助jon158采纳,获得10
7秒前
7秒前
wanci应助阔达的棒棒糖采纳,获得10
7秒前
量子星尘发布了新的文献求助50
8秒前
意忆发布了新的文献求助10
10秒前
10秒前
无可匹敌的饭量完成签到,获得积分10
10秒前
丘比特应助无辜的晓露采纳,获得10
10秒前
阔达的棒棒糖完成签到,获得积分10
12秒前
12秒前
qww关闭了qww文献求助
12秒前
zhiweiyan发布了新的文献求助10
14秒前
WYB完成签到 ,获得积分10
17秒前
17秒前
斯文败类应助lory采纳,获得10
18秒前
18秒前
8848完成签到,获得积分10
20秒前
21秒前
梓歆发布了新的文献求助30
22秒前
华仔应助吉鞅采纳,获得10
22秒前
汉堡包应助好像是肥阳采纳,获得10
24秒前
李健应助Literaturecome采纳,获得30
25秒前
健忘的柠檬完成签到,获得积分10
25秒前
zoes发布了新的文献求助10
28秒前
积极凌兰完成签到 ,获得积分10
31秒前
FashionBoy应助yanyan123采纳,获得10
31秒前
32秒前
33秒前
华仔应助肖旻采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
充电宝应助有机分子笼采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799404
求助须知:如何正确求助?哪些是违规求助? 5799557
关于积分的说明 15499913
捐赠科研通 4925819
什么是DOI,文献DOI怎么找? 2651671
邀请新用户注册赠送积分活动 1598708
关于科研通互助平台的介绍 1553594