Remaining useful life prediction method combining the life variation laws of aero-turbofan engine and auto-expandable cascaded LSTM model

涡扇发动机 变化(天文学) 计算机科学 法学 人工智能 航空航天工程 工程类 物理 政治学 天体物理学
作者
Likun Hu,Xujie He,Linfei Yin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110836-110836 被引量:5
标识
DOI:10.1016/j.asoc.2023.110836
摘要

The real-time status monitoring and health management of aero-turbofan engines (ATEs) can effectively reduce the risk of engine failure and ensure aircraft flight safety. Accurate prediction of the remaining useful life (RUL) of ATE is a vital tool for effectively monitoring the engine operating condition, in which long-short term memory (LSTM) networks are often applied to RUL prediction. However, because of the complex mechanical structure and operation mode of the aero-engine, the prediction accuracy of the LSTM network is not enough to meet the actual demand. This paper proposes an auto-expandable cascaded long-short term memory (ACLSTM) prediction model that incorporates the lifetime variation laws of ATE, which is mainly applied for the degradation assessment of ATEs and the accurate prediction of RUL. The ACLSTM model adopts the network structure of multiple LSTM modules connected step by step to continuously set the prediction error of the previous module as the training outputs of the latter module. This data processing method transforms the prediction process of the original data into that of the output error, effectively reducing the prediction error and improving the prediction effect. In addition, to further improve the prediction accuracy, this paper comprehensively proposes several empirical formulas for further correction of the prediction effect obtained by the ACLSTM model. In the experimental part, the prediction effectiveness of the proposed method is tested based on four subsets of the C-MAPSS dataset published by the National Aeronautics and Space Administration. The experimental results on the four datasets show that the root mean square error (RMSE) of the ACLSTM prediction model decreases by 95.44% on average compared to the traditional LSTM network. In addition, the RMSE of the model decreases by 96.48% on average after incorporating the empirical formula. The proposed method has the lowest RMSE compared to other methods with the highest prediction accuracy. The experiments thoroughly verify that the ACLSTM model and the proposed empirical formula are feasible and effective for improving the prediction accuracy of the RUL of ATE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助lmfffff采纳,获得30
刚刚
2秒前
2秒前
bao完成签到,获得积分10
3秒前
小王同学完成签到 ,获得积分10
3秒前
传奇3应助何必在乎采纳,获得10
3秒前
YJY完成签到 ,获得积分10
4秒前
LX发布了新的文献求助10
6秒前
Jasper应助Cindy165采纳,获得10
6秒前
7秒前
Orange应助科研r采纳,获得10
9秒前
研友_VZG7GZ应助暴走采纳,获得10
10秒前
搞怪从波完成签到 ,获得积分10
11秒前
聆风完成签到 ,获得积分10
12秒前
369258完成签到,获得积分10
12秒前
666666完成签到,获得积分10
12秒前
靓仔发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
Mexsol发布了新的文献求助20
14秒前
15秒前
15秒前
16秒前
Xingci发布了新的文献求助10
16秒前
大琪哥哥要顺利毕业完成签到 ,获得积分10
16秒前
ll完成签到,获得积分10
17秒前
17秒前
lyb完成签到 ,获得积分10
17秒前
CodeCraft应助wyp大魔王采纳,获得10
18秒前
共享精神应助科研r采纳,获得10
20秒前
20秒前
Cindy165发布了新的文献求助10
21秒前
23秒前
23秒前
popvich应助棋局采纳,获得20
24秒前
潘潘吐了应助王图图采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
25秒前
蓝天应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565