Remaining useful life prediction method combining the life variation laws of aero-turbofan engine and auto-expandable cascaded LSTM model

涡扇发动机 变化(天文学) 计算机科学 法学 人工智能 航空航天工程 工程类 物理 政治学 天体物理学
作者
Likun Hu,Xujie He,Linfei Yin
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:147: 110836-110836 被引量:5
标识
DOI:10.1016/j.asoc.2023.110836
摘要

The real-time status monitoring and health management of aero-turbofan engines (ATEs) can effectively reduce the risk of engine failure and ensure aircraft flight safety. Accurate prediction of the remaining useful life (RUL) of ATE is a vital tool for effectively monitoring the engine operating condition, in which long-short term memory (LSTM) networks are often applied to RUL prediction. However, because of the complex mechanical structure and operation mode of the aero-engine, the prediction accuracy of the LSTM network is not enough to meet the actual demand. This paper proposes an auto-expandable cascaded long-short term memory (ACLSTM) prediction model that incorporates the lifetime variation laws of ATE, which is mainly applied for the degradation assessment of ATEs and the accurate prediction of RUL. The ACLSTM model adopts the network structure of multiple LSTM modules connected step by step to continuously set the prediction error of the previous module as the training outputs of the latter module. This data processing method transforms the prediction process of the original data into that of the output error, effectively reducing the prediction error and improving the prediction effect. In addition, to further improve the prediction accuracy, this paper comprehensively proposes several empirical formulas for further correction of the prediction effect obtained by the ACLSTM model. In the experimental part, the prediction effectiveness of the proposed method is tested based on four subsets of the C-MAPSS dataset published by the National Aeronautics and Space Administration. The experimental results on the four datasets show that the root mean square error (RMSE) of the ACLSTM prediction model decreases by 95.44% on average compared to the traditional LSTM network. In addition, the RMSE of the model decreases by 96.48% on average after incorporating the empirical formula. The proposed method has the lowest RMSE compared to other methods with the highest prediction accuracy. The experiments thoroughly verify that the ACLSTM model and the proposed empirical formula are feasible and effective for improving the prediction accuracy of the RUL of ATE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
1秒前
李驰发布了新的文献求助10
2秒前
4秒前
4秒前
糖糖糖完成签到,获得积分10
6秒前
zhi完成签到,获得积分10
6秒前
nimeng123完成签到 ,获得积分10
7秒前
我要读博士完成签到 ,获得积分10
8秒前
8秒前
Hearing胡发布了新的文献求助10
10秒前
yy发布了新的文献求助10
10秒前
JNL完成签到,获得积分10
10秒前
木子李完成签到 ,获得积分10
10秒前
学术大白完成签到 ,获得积分10
12秒前
清脆的飞丹完成签到,获得积分10
12秒前
顾矜应助天上人间采纳,获得10
15秒前
15秒前
偏执发布了新的文献求助10
15秒前
Hh发布了新的文献求助10
16秒前
liuyf完成签到,获得积分10
18秒前
18秒前
Hearing胡完成签到,获得积分10
19秒前
完美世界应助yy采纳,获得10
22秒前
体贴的青烟完成签到,获得积分10
22秒前
24秒前
随逸完成签到,获得积分10
25秒前
26秒前
听话的醉冬完成签到 ,获得积分10
27秒前
猪猪hero发布了新的文献求助10
28秒前
29秒前
31秒前
华仔应助liuyf采纳,获得10
31秒前
zhouynn完成签到,获得积分10
31秒前
Sean完成签到,获得积分10
32秒前
天上人间发布了新的文献求助10
33秒前
HXJ完成签到,获得积分10
33秒前
把心放在肚里应助LW采纳,获得10
35秒前
顾矜应助猪猪hero采纳,获得30
35秒前
123发布了新的文献求助10
36秒前
wo完成签到 ,获得积分10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461079
求助须知:如何正确求助?哪些是违规求助? 3054882
关于积分的说明 9045217
捐赠科研通 2744757
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173