转录组
代谢组
生物
百草枯
活性氧
表型
计算生物学
代谢途径
否定选择
代谢组学
基因
适应(眼睛)
基因组
实验进化
遗传学
基因表达
生物信息学
生物化学
神经科学
作者
Kevin Rychel,Justin Tan,Arjun Patel,Cameron Lamoureux,Ying Hefner,Richard Szubin,Josefin Johnsen,Elsayed T. Mohamed,Patrick V. Phaneuf,Amitesh Anand,Connor A. Olson,Joon Ho Park,Anand V. Sastry,Laurence Yang,Adam M. Feist,Bernhard Ø. Palsson
出处
期刊:Cell Reports
[Elsevier]
日期:2023-09-01
卷期号:42 (9): 113105-113105
被引量:10
标识
DOI:10.1016/j.celrep.2023.113105
摘要
Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI