Identifying emerging trends and hot topics through intelligent data mining: the case of clinical psychology and psychotherapy

独创性 鉴定(生物学) 主题(文档) 价值(数学) 主题分析 心理学 领域(数学) 数据科学 心理治疗师 计算机科学 社会科学 定性研究 社会心理学 社会学 创造力 图书馆学 植物 数学 机器学习 纯数学 生物
作者
Анна Соколова,Полина Лобанова,Ilya Kuzminov
出处
期刊:Foresight [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/fs-02-2023-0026
摘要

Purpose The purpose of the paper is to present an integrated methodology for identifying trends in a particular subject area based on a combination of advanced text mining and expert methods. The authors aim to test it in an area of clinical psychology and psychotherapy in 2010–2019. Design/methodology/approach The authors demonstrate the way of applying text-mining and the Word2Vec model to identify hot topics (HT) and emerging trends (ET) in clinical psychology and psychotherapy. The analysis of 11.3 million scientific publications in the Microsoft Academic Graph database revealed the most rapidly growing clinical psychology and psychotherapy terms – those with the largest increase in the number of publications reflecting real or potential trends. Findings The proposed approach allows one to identify HT and ET for the six thematic clusters related to mental disorders, symptoms, pharmacology, psychotherapy, treatment techniques and important psychological skills. Practical implications The developed methodology allows one to see the broad picture of the most dynamic research areas in the field of clinical psychology and psychotherapy in 2010–2019. For clinicians, who are often overwhelmed by practical work, this map of the current research can help identify the areas worthy of further attention to improve the effectiveness of their clinical work. This methodology might be applied for the identification of trends in any other subject area by taking into account its specificity. Originality/value The paper demonstrates the value of the advanced text-mining approach for understanding trends in a subject area. To the best of the authors’ knowledge, for the first time, text-mining and the Word2Vec model have been applied to identifying trends in the field of clinical psychology and psychotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助lsk采纳,获得30
1秒前
lierking完成签到,获得积分10
2秒前
zty123发布了新的文献求助30
4秒前
4秒前
Lucas应助如意烨霖采纳,获得20
5秒前
星辰大海应助Ann采纳,获得10
8秒前
9秒前
yeurekar发布了新的文献求助10
10秒前
10秒前
闪闪雨雪发布了新的文献求助10
10秒前
123123发布了新的文献求助10
10秒前
10秒前
11秒前
烟花应助浏阳河采纳,获得10
12秒前
香蕉觅云应助远离焦绿采纳,获得10
13秒前
幽壑之潜蛟应助zgs采纳,获得10
14秒前
15秒前
百里酚蓝完成签到 ,获得积分10
16秒前
yeurekar完成签到,获得积分10
16秒前
16秒前
17秒前
华仔应助故意的念寒采纳,获得10
17秒前
铁柱xh完成签到 ,获得积分10
18秒前
如意烨霖发布了新的文献求助20
18秒前
19秒前
英姑应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
芝麻糊应助ccrr采纳,获得10
20秒前
不知道起什么好完成签到,获得积分10
21秒前
完美世界应助sybil采纳,获得10
21秒前
Akim应助左左嘀嘀嘀采纳,获得10
22秒前
23秒前
24秒前
24秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462523
求助须知:如何正确求助?哪些是违规求助? 3056054
关于积分的说明 9050469
捐赠科研通 2745649
什么是DOI,文献DOI怎么找? 1506494
科研通“疑难数据库(出版商)”最低求助积分说明 696141
邀请新用户注册赠送积分活动 695674