亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy

强化学习 计算机科学 维数之咒 数学优化 适应性 调度(生产过程) 状态空间 人工智能 数学 生态学 统计 生物
作者
Yingchao Dong,Hongli Zhang,Cong Wang,Xiaojun Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107230-107230 被引量:11
标识
DOI:10.1016/j.engappai.2023.107230
摘要

The collaborative optimization dispatching of multiple energy flows plays a crucial role in achieving the economic and efficient low-carbon operation of integrated energy systems (IESs). However, the dispatching problem for IESs is characterized by high dimensionality, non-linearity, and complex coupling. Furthermore, the integration of renewable energy sources and flexible loads has transformed the IES into a complex dynamic system with significant uncertainty. Traditional intelligent optimization algorithms exhibit poor adaptability and lengthy solution computation time when tackling such problems. In contrast, deep reinforcement learning (DRL), as an interactive trial-and-error learning method, has shown improved decision-making capabilities. In view of this, a data-driven soft actor-critic (SAC) deep reinforcement learning-based approach is proposed in this paper for interval optimal dispatch of IESs considering multiple uncertainties. First, the basic principle of SAC reinforcement learning is introduced in detail, and the basic framework of reinforcement learning for interval optimal scheduling of IESs is constructed. Then, the environment model of agent interaction is constructed, and the action and state space of DRL, as well as the reward mechanism and neural network structure, are designed. Finally, a typical IES case is experimentally analyzed and compared with three popular DRL algorithms and five state-of-the-art intelligent optimization algorithms. The experimental results demonstrate the advantages and effectiveness of the proposed method in solving the optimal dispatching of IESs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇咔咔完成签到 ,获得积分10
10秒前
萨尔莫斯完成签到,获得积分10
11秒前
杳鸢应助erica_kikai采纳,获得10
14秒前
张教授完成签到 ,获得积分10
15秒前
15秒前
20秒前
23秒前
唠叨的嘻嘻完成签到,获得积分10
39秒前
Raunio完成签到,获得积分10
1分钟前
斑布完成签到,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
杳鸢应助斑布采纳,获得200
1分钟前
彭于晏应助洒脱鲲采纳,获得10
1分钟前
光亮的翼完成签到 ,获得积分10
1分钟前
Mr_X完成签到,获得积分10
1分钟前
随性随缘随命完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
正直雁发布了新的文献求助10
1分钟前
2分钟前
2分钟前
ding应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
橘子完成签到,获得积分20
3分钟前
笨笨的怜雪完成签到 ,获得积分10
3分钟前
3分钟前
SYLH应助zhangqin采纳,获得10
3分钟前
3分钟前
义气的元柏完成签到 ,获得积分10
3分钟前
彭于晏应助姜姜姜采纳,获得10
3分钟前
杳鸢应助qwq采纳,获得10
3分钟前
MROU应助橘子采纳,获得10
3分钟前
Ephemeral完成签到 ,获得积分10
3分钟前
光亮曼云发布了新的文献求助10
4分钟前
小怪兽不吃人完成签到,获得积分10
4分钟前
MROU应助橘子采纳,获得10
4分钟前
幽壑之潜蛟完成签到,获得积分0
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455618
求助须知:如何正确求助?哪些是违规求助? 3050848
关于积分的说明 9022912
捐赠科研通 2739402
什么是DOI,文献DOI怎么找? 1502781
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387