已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy

强化学习 计算机科学 维数之咒 数学优化 适应性 调度(生产过程) 状态空间 人工智能 数学 生态学 生物 统计
作者
Yingchao Dong,Hongli Zhang,Cong Wang,Xiaojun Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107230-107230 被引量:15
标识
DOI:10.1016/j.engappai.2023.107230
摘要

The collaborative optimization dispatching of multiple energy flows plays a crucial role in achieving the economic and efficient low-carbon operation of integrated energy systems (IESs). However, the dispatching problem for IESs is characterized by high dimensionality, non-linearity, and complex coupling. Furthermore, the integration of renewable energy sources and flexible loads has transformed the IES into a complex dynamic system with significant uncertainty. Traditional intelligent optimization algorithms exhibit poor adaptability and lengthy solution computation time when tackling such problems. In contrast, deep reinforcement learning (DRL), as an interactive trial-and-error learning method, has shown improved decision-making capabilities. In view of this, a data-driven soft actor-critic (SAC) deep reinforcement learning-based approach is proposed in this paper for interval optimal dispatch of IESs considering multiple uncertainties. First, the basic principle of SAC reinforcement learning is introduced in detail, and the basic framework of reinforcement learning for interval optimal scheduling of IESs is constructed. Then, the environment model of agent interaction is constructed, and the action and state space of DRL, as well as the reward mechanism and neural network structure, are designed. Finally, a typical IES case is experimentally analyzed and compared with three popular DRL algorithms and five state-of-the-art intelligent optimization algorithms. The experimental results demonstrate the advantages and effectiveness of the proposed method in solving the optimal dispatching of IESs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助xuzhiwei采纳,获得10
1秒前
2秒前
潘潘发布了新的文献求助10
5秒前
5秒前
Jean完成签到,获得积分10
5秒前
ZGH完成签到,获得积分10
8秒前
8秒前
11秒前
缓慢新梅发布了新的文献求助10
14秒前
15秒前
bkagyin应助爱听歌契采纳,获得10
15秒前
16秒前
成懂事长完成签到,获得积分10
16秒前
成懂事长发布了新的文献求助10
19秒前
20秒前
23秒前
加油完成签到 ,获得积分10
23秒前
23秒前
留胡子发布了新的文献求助10
24秒前
wanci应助王欣采纳,获得10
25秒前
26秒前
爱学习的孩纸完成签到 ,获得积分10
27秒前
ChaoyongWu完成签到 ,获得积分10
28秒前
JY发布了新的文献求助10
28秒前
YY发布了新的文献求助10
28秒前
pitto发布了新的文献求助10
29秒前
31秒前
31秒前
31秒前
31秒前
33秒前
缓慢新梅完成签到,获得积分10
34秒前
斯文无敌发布了新的文献求助30
34秒前
Ava应助Allen采纳,获得10
35秒前
上官若男应助liangguangyuan采纳,获得10
35秒前
2333发布了新的文献求助20
36秒前
SYLH应助nenoaowu采纳,获得20
36秒前
36秒前
36秒前
ff发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766856
求助须知:如何正确求助?哪些是违规求助? 3311293
关于积分的说明 10158030
捐赠科研通 3026352
什么是DOI,文献DOI怎么找? 1661133
邀请新用户注册赠送积分活动 793858
科研通“疑难数据库(出版商)”最低求助积分说明 755846