Anomaly Detection of Service Function Chain Based on Distributed Knowledge Distillation Framework in Cloud–Edge Industrial Internet of Things Scenarios

云计算 计算机科学 异常检测 GSM演进的增强数据速率 异常(物理) 核(代数) 边缘计算 特征(语言学) 人工智能 数据挖掘 操作系统 语言学 哲学 物理 数学 组合数学 凝聚态物理
作者
Lun Tang,C. Xue,Yuchen Zhao,Qianbin Chen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 10843-10855 被引量:1
标识
DOI:10.1109/jiot.2023.3327795
摘要

Due to the increasingly complex and dynamic network topology, as well as multiple layers in the Cloud-Edge-End Collaboration Scenarios in the Industrial Internet of Things (IIoT), Service Function Chains (SFC) generated from user requests are more prone to anomalies compared to traditional hardware solutions. In order to timely detect anomalies in the SFC and ensure service quality, we propose a time series anomaly detection model based on a distributed knowledge distillation framework (DTS-KD) in this paper. Firstly, to detect each status of Virtual Network Function (VNF) in the SFC, we propose a distributed teacher-student knowledge distillation architecture to perform anomaly detection on each link containing different Virtual Network Functions (VNFs). Secondly, to address the problem of neglecting spatial topology information of feature nodes in traditional SFC anomaly detection schemes, we propose a feature fusion-based spatial-temporal dilated convolution module encoding scheme, which utilizes spatial convolution with dilated convolution to jointly encode and capture spatial-temporal dependencies. Lastly, during the knowledge transfer process between the teacher and student networks, we propose a progressive knowledge distillation algorithm, which automatically adjusts the student network learning stages by adjusting task attention weights. After training, the student network measures the presence of anomalies in the links at each moment through the reconstruction data anomaly scores, thereby completing the SFC anomaly detection at that moment. The effectiveness of this proposed method under model compression conditions is validated on the ITU AI/ML in 5G dataset using four performance metrics: F1 score, accuracy, precision, and recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YY完成签到 ,获得积分10
刚刚
adheret完成签到,获得积分10
1秒前
ZzZz完成签到,获得积分10
1秒前
星辰大海应助悦耳的鸭子采纳,获得10
1秒前
1秒前
Domi0712完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
赘婿应助还单身的心情采纳,获得10
4秒前
5秒前
hzwyyds应助彩色的过客采纳,获得10
5秒前
5秒前
Jasper应助呆呆采纳,获得10
6秒前
香蕉觅云应助wmywdx采纳,获得10
6秒前
共享精神应助zzf采纳,获得10
6秒前
大憨憨发布了新的文献求助10
6秒前
鱼鱼鱼完成签到,获得积分10
6秒前
小闵完成签到,获得积分10
6秒前
SciGPT应助何姗悦采纳,获得10
7秒前
三千年的成长完成签到 ,获得积分10
7秒前
千寻完成签到 ,获得积分10
7秒前
羊村第一巴图鲁完成签到,获得积分10
8秒前
8秒前
墨雷完成签到,获得积分10
8秒前
李伟刺猹发布了新的文献求助10
8秒前
AzureWindX发布了新的文献求助10
8秒前
feike完成签到,获得积分10
9秒前
鱼鱼鱼发布了新的文献求助10
10秒前
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978