已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Structure-based pharmacophore modeling 1. Automated random pharmacophore model generation

药效团 虚拟筛选 G蛋白偶联受体 计算生物学 药物发现 计算机科学 化学 立体化学 生物 受体 生物化学
作者
Gregory L. Szwabowski,Jon C. Cole,Daniel L. Baker,Abby L. Parrill
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:121: 108429-108429 被引量:1
标识
DOI:10.1016/j.jmgm.2023.108429
摘要

Pharmacophores are three-dimensional arrangements of molecular features required for biological activity that are often used in virtual screening efforts to prioritize ligands for experimental testing. G protein-coupled receptors (GPCR) are integral membrane proteins of considerable interest as targets for ligand discovery and drug development. Ligand-based pharmacophore models can be constructed to identify structural commonalities between known bioactive ligands for targets including GPCR. However, structure-based pharmacophores (which only require an experimentally determined or modeled structure for a protein target) have gained more attention to aid in virtual screening efforts as the number of publicly available experimentally determined GPCR structures have increased (140 unique GPCR represented as of October 24, 2022). Thus, the goal of this study was to develop a method of structure-based pharmacophore model generation applicable to ligand discovery for GPCR that have few known ligands. Pharmacophore models were generated within the active sites of 8 class A GPCR crystal structures via automated annotation of 5 randomly selected functional group fragments to sample diverse combinations of pharmacophore features. Each of the 5000 generated pharmacophores was then used to search a database containing active and decoy/inactive compounds for 30 class A GPCR and scored using enrichment factor and goodness-of-hit metrics to assess performance. Application of this method to the set of 8 class A GPCR produced pharmacophore models possessing the theoretical maximum enrichment factor value in both resolved structures (8 of 8 cases) and homology models (7 of 8 cases), indicating that generated pharmacophore models can prove useful in the context of virtual screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利完成签到,获得积分10
刚刚
淡淡无春发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
4秒前
7秒前
7秒前
feng完成签到,获得积分20
8秒前
llk发布了新的文献求助10
12秒前
小蘑菇应助学术蝗虫采纳,获得10
14秒前
Grayball应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
orixero应助科研通管家采纳,获得10
17秒前
Grayball应助科研通管家采纳,获得10
17秒前
JamesPei应助踏实书文采纳,获得50
18秒前
量子星尘发布了新的文献求助10
19秒前
伯爵完成签到 ,获得积分10
19秒前
清秀紫南完成签到 ,获得积分10
20秒前
kyt发布了新的文献求助10
20秒前
土豪的摩托完成签到 ,获得积分10
21秒前
23秒前
胡萝卜须应助nickchenzzz采纳,获得10
23秒前
23秒前
cao完成签到 ,获得积分10
24秒前
陈一完成签到,获得积分10
26秒前
Lucas应助feng采纳,获得10
26秒前
27秒前
学术蝗虫发布了新的文献求助10
27秒前
CATH完成签到 ,获得积分10
27秒前
111发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
30秒前
lin完成签到,获得积分10
31秒前
lurun完成签到,获得积分10
31秒前
32秒前
xx完成签到 ,获得积分10
34秒前
笑点低千愁完成签到,获得积分20
34秒前
醉生梦死完成签到 ,获得积分10
34秒前
Milton_z完成签到 ,获得积分10
36秒前
脑洞疼应助null采纳,获得10
36秒前
36秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762628
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185