A simple and green method for simultaneously determining the geographical origin and glycogen content of oysters using ATR–FTIR and chemometrics

化学计量学 偏最小二乘回归 线性判别分析 支持向量机 模式识别(心理学) 数学 生物系统 人工智能 相关系数 统计 计算机科学 机器学习 生物
作者
Bingjian Guo,Ziwei Zou,Zheng Huang,Qianyi Wang,Jinghua Qin,Yue Guo,Shihan Pan,Jinbin Wei,Hongwei Guo,Dan Zhu,Zhiheng Su
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105229-105229 被引量:11
标识
DOI:10.1016/j.jfca.2023.105229
摘要

Oysters are a marine bivalve extensively used as a food product and in medicinal drugs. However, the geographical origin of oysters greatly affects their economic value and quality. In this study, a simple and eco-friendly method is proposed for geographically tracing oysters and determining their bioactive glycogen content using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Three classification algorithms, including partial least squares-discriminant analysis (PLS-DA), orthogonal PLS-DA (OPLS-DA), and least squares support vector machine (LS-SVM), were applied to determine the geographical origin of oysters. Simultaneously, three types of PLS algorithms, backward interval PLS (BI-PLS), synergy interval PLS (SI-PLS), and competitive adaptive reweighted sampling PLS (CARS-PLS), were used to evaluate the feasibility of determining the glycogen content of oysters. In addition, five signal preprocessing methods were compared to enhance the prediction performance of the qualitative and quantitative models. For qualitative analysis, 100% classification accuracy was achieved using the PLS-DA, OPLS-DA, and LS-SVM. For quantitative analysis, the SI-PLS model showed the best predicted results (correlation coefficient of prediction (RP) = 0.96, relative analysis error of prediction (RPDP) = 3.38), indicating its stable and high predictive performance as a new analytical technique for the traceability supervision and quality evaluation of oysters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
X悦发布了新的文献求助10
刚刚
实验室牛马完成签到,获得积分10
刚刚
aaabbbccc发布了新的文献求助10
刚刚
小茹完成签到,获得积分10
1秒前
小金完成签到,获得积分10
1秒前
满意代亦发布了新的文献求助10
1秒前
洁净芸遥发布了新的文献求助10
1秒前
Wyf关闭了Wyf文献求助
1秒前
wng完成签到,获得积分10
1秒前
蓁蓁完成签到,获得积分10
2秒前
lemon完成签到,获得积分10
2秒前
sajdhjas发布了新的文献求助10
2秒前
2秒前
2秒前
爆米花应助abcd_1067采纳,获得10
2秒前
kaoru完成签到,获得积分10
3秒前
wangqiuyue完成签到,获得积分10
3秒前
3秒前
长情的寇完成签到 ,获得积分10
3秒前
隐形曼青应助amy采纳,获得10
3秒前
boboo完成签到 ,获得积分10
4秒前
孟浩然完成签到 ,获得积分10
4秒前
英俊的铭应助huanir99采纳,获得30
4秒前
小金发布了新的文献求助10
4秒前
万信心完成签到,获得积分10
5秒前
5秒前
6秒前
HAHAHA完成签到,获得积分10
7秒前
Ava应助黄裳采纳,获得10
7秒前
7秒前
Hello应助张德胜采纳,获得10
7秒前
7秒前
小蘑菇应助一台小钢炮采纳,获得30
7秒前
7秒前
蒋美桥发布了新的文献求助80
7秒前
xkl发布了新的文献求助10
7秒前
喜悦的黑夜完成签到,获得积分10
8秒前
张月亮发布了新的文献求助10
8秒前
8秒前
热心的芝麻完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524179
求助须知:如何正确求助?哪些是违规求助? 4614787
关于积分的说明 14544532
捐赠科研通 4552587
什么是DOI,文献DOI怎么找? 2494902
邀请新用户注册赠送积分活动 1475610
关于科研通互助平台的介绍 1447321