A simple and green method for simultaneously determining the geographical origin and glycogen content of oysters using ATR–FTIR and chemometrics

化学计量学 偏最小二乘回归 线性判别分析 支持向量机 模式识别(心理学) 数学 生物系统 人工智能 相关系数 统计 计算机科学 机器学习 生物
作者
Bingjian Guo,Ziwei Zou,Zheng Huang,Qianyi Wang,Jinghua Qin,Yue Guo,Shihan Pan,Jinbin Wei,Hongwei Guo,Dan Zhu,Zhiheng Su
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105229-105229 被引量:11
标识
DOI:10.1016/j.jfca.2023.105229
摘要

Oysters are a marine bivalve extensively used as a food product and in medicinal drugs. However, the geographical origin of oysters greatly affects their economic value and quality. In this study, a simple and eco-friendly method is proposed for geographically tracing oysters and determining their bioactive glycogen content using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Three classification algorithms, including partial least squares-discriminant analysis (PLS-DA), orthogonal PLS-DA (OPLS-DA), and least squares support vector machine (LS-SVM), were applied to determine the geographical origin of oysters. Simultaneously, three types of PLS algorithms, backward interval PLS (BI-PLS), synergy interval PLS (SI-PLS), and competitive adaptive reweighted sampling PLS (CARS-PLS), were used to evaluate the feasibility of determining the glycogen content of oysters. In addition, five signal preprocessing methods were compared to enhance the prediction performance of the qualitative and quantitative models. For qualitative analysis, 100% classification accuracy was achieved using the PLS-DA, OPLS-DA, and LS-SVM. For quantitative analysis, the SI-PLS model showed the best predicted results (correlation coefficient of prediction (RP) = 0.96, relative analysis error of prediction (RPDP) = 3.38), indicating its stable and high predictive performance as a new analytical technique for the traceability supervision and quality evaluation of oysters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助kangk采纳,获得10
刚刚
浮游应助空明流毓采纳,获得10
2秒前
3秒前
YUESIYA发布了新的文献求助30
4秒前
寒冷的奇异果完成签到,获得积分10
4秒前
spc68应助早安采纳,获得10
8秒前
复成完成签到 ,获得积分10
10秒前
光亮妙之完成签到,获得积分10
10秒前
dd发布了新的文献求助30
10秒前
整齐半青完成签到 ,获得积分10
10秒前
你好完成签到,获得积分10
11秒前
chenanqi完成签到,获得积分10
11秒前
12秒前
yfn完成签到,获得积分10
16秒前
17秒前
21秒前
halo完成签到,获得积分10
22秒前
抑郁小鼠解剖家完成签到,获得积分10
22秒前
忧心的不言完成签到,获得积分10
24秒前
5_羟色胺完成签到,获得积分10
26秒前
12135发布了新的文献求助30
26秒前
wanci应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得80
29秒前
华仔应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得30
29秒前
爱喝酸奶完成签到 ,获得积分10
29秒前
njgi发布了新的文献求助10
30秒前
材小料完成签到,获得积分10
31秒前
FashionBoy应助重要谷雪采纳,获得10
32秒前
爱偷懒的猪完成签到,获得积分10
33秒前
怂宝儿完成签到,获得积分10
34秒前
35秒前
37秒前
水澈天澜发布了新的文献求助20
38秒前
dd发布了新的文献求助10
39秒前
39秒前
俊逸的棒棒糖完成签到 ,获得积分10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521