A simple and green method for simultaneously determining the geographical origin and glycogen content of oysters using ATR–FTIR and chemometrics

化学计量学 偏最小二乘回归 线性判别分析 支持向量机 模式识别(心理学) 数学 生物系统 人工智能 相关系数 统计 计算机科学 机器学习 生物
作者
Bingjian Guo,Ziwei Zou,Zheng Huang,Qianyi Wang,Jinghua Qin,Yue Guo,Shihan Pan,Jinbin Wei,Hongwei Guo,Dan Zhu,Zhiheng Su
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105229-105229 被引量:8
标识
DOI:10.1016/j.jfca.2023.105229
摘要

Oysters are a marine bivalve extensively used as a food product and in medicinal drugs. However, the geographical origin of oysters greatly affects their economic value and quality. In this study, a simple and eco-friendly method is proposed for geographically tracing oysters and determining their bioactive glycogen content using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Three classification algorithms, including partial least squares-discriminant analysis (PLS-DA), orthogonal PLS-DA (OPLS-DA), and least squares support vector machine (LS-SVM), were applied to determine the geographical origin of oysters. Simultaneously, three types of PLS algorithms, backward interval PLS (BI-PLS), synergy interval PLS (SI-PLS), and competitive adaptive reweighted sampling PLS (CARS-PLS), were used to evaluate the feasibility of determining the glycogen content of oysters. In addition, five signal preprocessing methods were compared to enhance the prediction performance of the qualitative and quantitative models. For qualitative analysis, 100% classification accuracy was achieved using the PLS-DA, OPLS-DA, and LS-SVM. For quantitative analysis, the SI-PLS model showed the best predicted results (correlation coefficient of prediction (RP) = 0.96, relative analysis error of prediction (RPDP) = 3.38), indicating its stable and high predictive performance as a new analytical technique for the traceability supervision and quality evaluation of oysters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽忆山发布了新的文献求助10
1秒前
睡觉晒太阳完成签到,获得积分10
1秒前
andy完成签到,获得积分10
1秒前
1秒前
Itachi12138完成签到,获得积分10
1秒前
CipherSage应助蓝莓松饼采纳,获得10
1秒前
1秒前
团团完成签到,获得积分10
1秒前
追寻的易烟完成签到,获得积分10
1秒前
snow完成签到,获得积分10
2秒前
2秒前
2秒前
1111完成签到,获得积分20
3秒前
爆米花应助笑点低蜜蜂采纳,获得10
3秒前
橘子味汽水完成签到 ,获得积分10
3秒前
Victor陈完成签到,获得积分10
3秒前
3秒前
seed85完成签到,获得积分10
3秒前
最初完成签到,获得积分20
4秒前
Hello应助Chem is try采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
4秒前
5秒前
落寞白曼完成签到,获得积分10
6秒前
6秒前
海鸥海鸥发布了新的文献求助10
7秒前
别让我误会完成签到 ,获得积分10
8秒前
8秒前
KK发布了新的文献求助30
8秒前
娃娃完成签到 ,获得积分20
8秒前
科研通AI5应助结实的冰真采纳,获得30
8秒前
冷静的小熊猫完成签到,获得积分10
9秒前
Donnie完成签到,获得积分10
9秒前
若尘完成签到,获得积分10
10秒前
椰子完成签到 ,获得积分10
10秒前
10秒前
细腻涵菱完成签到,获得积分10
11秒前
吕耀炜完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672