Multi-input parallel graph neural network for semi-supervised rolling bearing fault diagnosis

计算机科学 方位(导航) 断层(地质) 卷积神经网络 数据挖掘 图形 模式识别(心理学) 人工智能 人工神经网络 特征提取 机器学习 理论计算机科学 地质学 地震学
作者
Shouyang Bao,Jing Feng,Xiaobin Xu,Pingzhi Hou,Zhenjie Zhang,Jianfang Meng,Felix Steyskal
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055110-055110 被引量:6
标识
DOI:10.1088/1361-6501/acb5b7
摘要

Abstract Rolling bearing fault diagnosis is the key technology to ensure the reliable, efficient and sustainable operation of rotating machinery. Many fault diagnosis methods have been proposed based on vibration signal analysis from the perspective of data-driven analytics. However, these methods normally take signals of multiple sensors as a whole for feature extraction without considering the relationship among samples. This drawback leads to insufficient feature mining, thereby affecting the accuracy of fault diagnosis. Moreover, these methods need large numbers of labeled samples to achieve high diagnosis accuracy, which requires extensive human labor and is impractical in many real-world applications. To address these issues, a semi-supervised rolling bearing fault diagnosis method based on multi-input parallel graph neural network is proposed in this paper. In the proposed model, signals of multiple sensors are treated separately; thus, features will be extracted parallelly in a more sufficient way. Then, signals of each sensor are constructed into a graph based on limited-radius nearest neighbor, which will add extra relationship information to aid in fault diagnosis. In addition, with the implementation of graph convolutional neural network, the proposed method is able to achieve a more accurate diagnosis than the comparison methods in the case of few labeled data. Finally, the proposed model is evaluated on rolling bearing dataset provided by Case Western Reserve University. Compared with some classical fault diagnosis methods, the proposed model can improve the diagnosis accuracy up to more than 99% even when the proportion of training samples is only 20%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mouxq发布了新的文献求助10
刚刚
飘逸善若完成签到,获得积分10
1秒前
1秒前
懂123发布了新的文献求助20
1秒前
小巧谷波发布了新的文献求助10
2秒前
李健的小迷弟应助九丢采纳,获得10
2秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
含蓄的明雪完成签到,获得积分10
6秒前
坚强夜南完成签到,获得积分20
6秒前
6秒前
完美世界应助1diandiant采纳,获得10
6秒前
科研通AI6应助贾哲宇采纳,获得10
7秒前
研友_8WMgOn完成签到 ,获得积分10
7秒前
8秒前
8秒前
Hui发布了新的文献求助10
9秒前
ZA完成签到 ,获得积分20
9秒前
10秒前
franklin_fsz应助有点儿小库采纳,获得30
11秒前
脑洞疼应助啦啦啦采纳,获得30
12秒前
hhhh关注了科研通微信公众号
12秒前
wlscj举报晨儿求助涉嫌违规
12秒前
12秒前
junjun00发布了新的文献求助10
13秒前
思源应助安an采纳,获得10
13秒前
14秒前
慧慧完成签到,获得积分10
15秒前
15秒前
小巧谷波关注了科研通微信公众号
15秒前
15秒前
有点儿小库完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
CuvJ完成签到,获得积分10
18秒前
李怡坪发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409588
求助须知:如何正确求助?哪些是违规求助? 4527170
关于积分的说明 14109460
捐赠科研通 4441675
什么是DOI,文献DOI怎么找? 2437581
邀请新用户注册赠送积分活动 1429526
关于科研通互助平台的介绍 1407703