Multi-input parallel graph neural network for semi-supervised rolling bearing fault diagnosis

计算机科学 方位(导航) 断层(地质) 卷积神经网络 数据挖掘 图形 模式识别(心理学) 人工智能 人工神经网络 特征提取 机器学习 理论计算机科学 地质学 地震学
作者
Shouyang Bao,Jing Feng,Xiaobin Xu,Pingzhi Hou,Zhenjie Zhang,Jianfang Meng,Felix Steyskal
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055110-055110 被引量:6
标识
DOI:10.1088/1361-6501/acb5b7
摘要

Abstract Rolling bearing fault diagnosis is the key technology to ensure the reliable, efficient and sustainable operation of rotating machinery. Many fault diagnosis methods have been proposed based on vibration signal analysis from the perspective of data-driven analytics. However, these methods normally take signals of multiple sensors as a whole for feature extraction without considering the relationship among samples. This drawback leads to insufficient feature mining, thereby affecting the accuracy of fault diagnosis. Moreover, these methods need large numbers of labeled samples to achieve high diagnosis accuracy, which requires extensive human labor and is impractical in many real-world applications. To address these issues, a semi-supervised rolling bearing fault diagnosis method based on multi-input parallel graph neural network is proposed in this paper. In the proposed model, signals of multiple sensors are treated separately; thus, features will be extracted parallelly in a more sufficient way. Then, signals of each sensor are constructed into a graph based on limited-radius nearest neighbor, which will add extra relationship information to aid in fault diagnosis. In addition, with the implementation of graph convolutional neural network, the proposed method is able to achieve a more accurate diagnosis than the comparison methods in the case of few labeled data. Finally, the proposed model is evaluated on rolling bearing dataset provided by Case Western Reserve University. Compared with some classical fault diagnosis methods, the proposed model can improve the diagnosis accuracy up to more than 99% even when the proportion of training samples is only 20%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangzhang0250完成签到 ,获得积分20
刚刚
机智的明雪完成签到,获得积分10
1秒前
雪子发布了新的文献求助10
2秒前
ty发布了新的文献求助10
3秒前
tangtang完成签到,获得积分10
3秒前
喵喵发布了新的文献求助10
3秒前
hhhuan完成签到,获得积分10
4秒前
4秒前
xiaoyunfei发布了新的文献求助10
4秒前
Dopamine完成签到 ,获得积分10
4秒前
王钟萱完成签到,获得积分10
5秒前
奇异果熊猫人完成签到,获得积分10
5秒前
小二郎应助尼尔多隆将军采纳,获得10
5秒前
1s发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
ZZH发布了新的文献求助10
9秒前
九九发布了新的文献求助10
9秒前
思源应助喵喵采纳,获得30
9秒前
Mic应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
123456完成签到,获得积分10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
蓝天应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186