Multi-input parallel graph neural network for semi-supervised rolling bearing fault diagnosis

计算机科学 方位(导航) 断层(地质) 卷积神经网络 数据挖掘 图形 模式识别(心理学) 人工智能 人工神经网络 特征提取 机器学习 理论计算机科学 地质学 地震学
作者
Shouyang Bao,Jing Feng,Xiaobin Xu,Pingzhi Hou,Zhenjie Zhang,Jianfang Meng,Felix Steyskal
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055110-055110 被引量:6
标识
DOI:10.1088/1361-6501/acb5b7
摘要

Abstract Rolling bearing fault diagnosis is the key technology to ensure the reliable, efficient and sustainable operation of rotating machinery. Many fault diagnosis methods have been proposed based on vibration signal analysis from the perspective of data-driven analytics. However, these methods normally take signals of multiple sensors as a whole for feature extraction without considering the relationship among samples. This drawback leads to insufficient feature mining, thereby affecting the accuracy of fault diagnosis. Moreover, these methods need large numbers of labeled samples to achieve high diagnosis accuracy, which requires extensive human labor and is impractical in many real-world applications. To address these issues, a semi-supervised rolling bearing fault diagnosis method based on multi-input parallel graph neural network is proposed in this paper. In the proposed model, signals of multiple sensors are treated separately; thus, features will be extracted parallelly in a more sufficient way. Then, signals of each sensor are constructed into a graph based on limited-radius nearest neighbor, which will add extra relationship information to aid in fault diagnosis. In addition, with the implementation of graph convolutional neural network, the proposed method is able to achieve a more accurate diagnosis than the comparison methods in the case of few labeled data. Finally, the proposed model is evaluated on rolling bearing dataset provided by Case Western Reserve University. Compared with some classical fault diagnosis methods, the proposed model can improve the diagnosis accuracy up to more than 99% even when the proportion of training samples is only 20%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助kids采纳,获得10
刚刚
小蘑菇应助感动绮晴采纳,获得30
刚刚
慕容冰璃完成签到,获得积分10
1秒前
冷艳的半凡完成签到,获得积分10
1秒前
pluto完成签到,获得积分10
1秒前
呆萌千柳关注了科研通微信公众号
1秒前
小马甲应助四菇娘采纳,获得10
1秒前
1秒前
hongping发布了新的文献求助10
1秒前
共享精神应助675采纳,获得10
1秒前
123发布了新的文献求助10
1秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
赘婿应助wang采纳,获得10
2秒前
蓝柚应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
Orange应助MYLCX采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
搞怪天真发布了新的文献求助10
3秒前
3秒前
小周发布了新的文献求助10
4秒前
斯文败类应助淡然寒蕾采纳,获得10
4秒前
Dali应助小七采纳,获得10
4秒前
星辰大海应助曾经的饼干采纳,获得10
5秒前
英姑应助兰兰采纳,获得10
5秒前
小明同学完成签到,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448