Multi-input parallel graph neural network for semi-supervised rolling bearing fault diagnosis

计算机科学 方位(导航) 断层(地质) 卷积神经网络 数据挖掘 图形 模式识别(心理学) 人工智能 人工神经网络 特征提取 机器学习 理论计算机科学 地质学 地震学
作者
Shouyang Bao,Jing Feng,Xiaobin Xu,Pingzhi Hou,Zhenjie Zhang,Jianfang Meng,Felix Steyskal
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055110-055110 被引量:6
标识
DOI:10.1088/1361-6501/acb5b7
摘要

Abstract Rolling bearing fault diagnosis is the key technology to ensure the reliable, efficient and sustainable operation of rotating machinery. Many fault diagnosis methods have been proposed based on vibration signal analysis from the perspective of data-driven analytics. However, these methods normally take signals of multiple sensors as a whole for feature extraction without considering the relationship among samples. This drawback leads to insufficient feature mining, thereby affecting the accuracy of fault diagnosis. Moreover, these methods need large numbers of labeled samples to achieve high diagnosis accuracy, which requires extensive human labor and is impractical in many real-world applications. To address these issues, a semi-supervised rolling bearing fault diagnosis method based on multi-input parallel graph neural network is proposed in this paper. In the proposed model, signals of multiple sensors are treated separately; thus, features will be extracted parallelly in a more sufficient way. Then, signals of each sensor are constructed into a graph based on limited-radius nearest neighbor, which will add extra relationship information to aid in fault diagnosis. In addition, with the implementation of graph convolutional neural network, the proposed method is able to achieve a more accurate diagnosis than the comparison methods in the case of few labeled data. Finally, the proposed model is evaluated on rolling bearing dataset provided by Case Western Reserve University. Compared with some classical fault diagnosis methods, the proposed model can improve the diagnosis accuracy up to more than 99% even when the proportion of training samples is only 20%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainnnn发布了新的文献求助10
刚刚
CR完成签到 ,获得积分10
刚刚
Jasper应助七个丸子采纳,获得10
1秒前
左丘傲菡发布了新的文献求助30
1秒前
3秒前
3秒前
mymEN完成签到 ,获得积分10
3秒前
自闭的研究生完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助顾宇采纳,获得10
7秒前
小马甲应助安详的韩庆采纳,获得10
7秒前
拉长的冷霜完成签到 ,获得积分10
7秒前
8秒前
9秒前
jar7989发布了新的文献求助10
9秒前
爆米花应助Synan采纳,获得10
10秒前
研友_8DAv0L发布了新的文献求助10
10秒前
Rainnnn完成签到,获得积分10
13秒前
13秒前
14秒前
杏仁露发布了新的文献求助10
14秒前
16秒前
16秒前
我是老大应助研友_8DAv0L采纳,获得10
17秒前
大个应助无敌葡萄爱学习采纳,获得10
17秒前
iNk应助yyyyyyyyyy采纳,获得20
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
海浪发布了新的文献求助10
20秒前
Ephemerality完成签到 ,获得积分10
22秒前
爆米花应助魏淑芬采纳,获得10
22秒前
虚幻的雪巧完成签到,获得积分10
23秒前
斯文败类应助调皮正豪采纳,获得50
24秒前
风中垣完成签到,获得积分10
25秒前
hh完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
大闲鱼铭一完成签到 ,获得积分10
29秒前
醋溜爆肚儿完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689