Multi-input parallel graph neural network for semi-supervised rolling bearing fault diagnosis

计算机科学 方位(导航) 断层(地质) 卷积神经网络 数据挖掘 图形 模式识别(心理学) 人工智能 人工神经网络 特征提取 机器学习 理论计算机科学 地质学 地震学
作者
Shouyang Bao,Jing Feng,Xiaobin Xu,Pingzhi Hou,Zhenjie Zhang,Jianfang Meng,Felix Steyskal
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055110-055110 被引量:6
标识
DOI:10.1088/1361-6501/acb5b7
摘要

Abstract Rolling bearing fault diagnosis is the key technology to ensure the reliable, efficient and sustainable operation of rotating machinery. Many fault diagnosis methods have been proposed based on vibration signal analysis from the perspective of data-driven analytics. However, these methods normally take signals of multiple sensors as a whole for feature extraction without considering the relationship among samples. This drawback leads to insufficient feature mining, thereby affecting the accuracy of fault diagnosis. Moreover, these methods need large numbers of labeled samples to achieve high diagnosis accuracy, which requires extensive human labor and is impractical in many real-world applications. To address these issues, a semi-supervised rolling bearing fault diagnosis method based on multi-input parallel graph neural network is proposed in this paper. In the proposed model, signals of multiple sensors are treated separately; thus, features will be extracted parallelly in a more sufficient way. Then, signals of each sensor are constructed into a graph based on limited-radius nearest neighbor, which will add extra relationship information to aid in fault diagnosis. In addition, with the implementation of graph convolutional neural network, the proposed method is able to achieve a more accurate diagnosis than the comparison methods in the case of few labeled data. Finally, the proposed model is evaluated on rolling bearing dataset provided by Case Western Reserve University. Compared with some classical fault diagnosis methods, the proposed model can improve the diagnosis accuracy up to more than 99% even when the proportion of training samples is only 20%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一点完成签到 ,获得积分10
1秒前
tanhaili完成签到,获得积分10
1秒前
1秒前
dd完成签到 ,获得积分10
1秒前
任性的一斩完成签到,获得积分10
2秒前
2秒前
可爱的函函应助打个秋采纳,获得10
2秒前
sankumao完成签到,获得积分10
2秒前
3秒前
chris chen完成签到,获得积分0
3秒前
小丁发布了新的文献求助10
3秒前
旺仔发布了新的文献求助10
4秒前
科目三应助滋达不溜采纳,获得10
4秒前
4秒前
细心怀蕊发布了新的文献求助10
4秒前
xxx完成签到,获得积分10
4秒前
ghmghm9910完成签到,获得积分10
4秒前
5秒前
怕孤单的初蝶完成签到,获得积分10
5秒前
5秒前
6秒前
淡定碧玉完成签到 ,获得积分10
7秒前
唠叨的冰蝶完成签到,获得积分20
7秒前
于宝地发布了新的文献求助10
8秒前
8秒前
8秒前
马某某某某某完成签到,获得积分10
8秒前
在水一方应助典雅不凡采纳,获得10
9秒前
KWang应助kouke80采纳,获得10
9秒前
sankumao发布了新的文献求助10
9秒前
开心元霜发布了新的文献求助10
9秒前
zwenng完成签到,获得积分10
10秒前
10秒前
10秒前
一颗辣白菜叶完成签到 ,获得积分10
11秒前
fz1完成签到 ,获得积分10
11秒前
12秒前
情怀应助一个小胖子采纳,获得10
12秒前
科研通AI2S应助小丁采纳,获得10
12秒前
细心怀蕊完成签到 ,获得积分10
12秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆热工水力特性及安全审评关键问题研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052959
求助须知:如何正确求助?哪些是违规求助? 2710182
关于积分的说明 7419994
捐赠科研通 2354794
什么是DOI,文献DOI怎么找? 1246282
科研通“疑难数据库(出版商)”最低求助积分说明 606047
版权声明 595975