电阻随机存取存储器
材料科学
肖特基势垒
光电子学
肖特基二极管
俘获
电极
整改
氧化物
电阻式触摸屏
纳米技术
二极管
电压
电气工程
化学
工程类
物理化学
冶金
生物
生态学
作者
Chao Zang,Bo Li,Yun Sun,Shun Feng,Xinzhe Wang,Xiaohui Wang,Dongming Sun
出处
期刊:Nanoscale advances
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:4 (23): 5062-5069
被引量:9
摘要
For filamentary resistive random-access memory (RRAM) devices, the switching behavior between different resistance states usually occurs abruptly, while the random formation of conductive filaments usually results in large fluctuations in resistance states, leading to poor uniformity. Schottky barrier modulation enables resistive switching through charge trapping/de-trapping at the top-electrode/oxide interface, which is effective for improving the uniformity of RRAM devices. Here, we report a uniform RRAM device based on a MXene-TiO2 Schottky junction. The defect traps within the MXene formed during its fabricating process can trap and release the charges at the MXene-TiO2 interface to modulate the Schottky barrier for the resistive switching behavior. Our devices exhibit excellent current on-off ratio uniformity, device-to-device reproducibility, long-term retention, and endurance reliability. Due to the different carrier-blocking abilities of the MXene-TiO2 and TiO2-Si interface barriers, a self-rectifying behavior can be obtained with a rectifying ratio of 103, which offers great potential for large-scale RRAM applications based on MXene materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI